OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 13 — Jul. 1, 2013
  • pp: 2354–2356

Femtosecond laser-induced apodized Bragg grating waveguides

Peter Zeil, Christian Voigtländer, Jens Thomas, Daniel Richter, and Stefan Nolte  »View Author Affiliations

Optics Letters, Vol. 38, Issue 13, pp. 2354-2356 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the inscription of apodized Bragg grating waveguides (BGWs) in fused silica using a modulated high repetition rate fs laser system. Tailoring of the grating’s coupling strength is facilitated by appropriately substructuring the modulation of the inscribing laser radiation. The proposed alteration delivers an unchanged constant mean refractive index entailing homogeneous guiding properties along the entire waveguide. The BGWs fabricated using a Gaussian apodized modulation profile exhibit a 10 dB improvement in sideband suppression compared to waveguide gratings written with a uniform modulation profile.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(130.2755) Integrated optics : Glass waveguides
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: February 20, 2013
Revised Manuscript: May 18, 2013
Manuscript Accepted: June 4, 2013
Published: June 28, 2013

Peter Zeil, Christian Voigtländer, Jens Thomas, Daniel Richter, and Stefan Nolte, "Femtosecond laser-induced apodized Bragg grating waveguides," Opt. Lett. 38, 2354-2356 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996). [CrossRef]
  2. A. Streltsov and N. Borrelli, Opt. Lett. 26, 42 (2001). [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003). [CrossRef]
  4. G. Marshall, P. Dekker, M. Ams, J. Piper, and M. Withford, Opt. Lett. 33, 956 (2008). [CrossRef]
  5. C. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, Electron. Lett. 31, 1488 (1995). [CrossRef]
  6. B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, Electron. Lett. 31, 223 (1995). [CrossRef]
  7. H. Zhang, S. Eaton, and P. Herman, Opt. Lett. 32, 2559 (2007). [CrossRef]
  8. G. Marshall, M. Ams, and M. Withford, Opt. Lett. 31, 2690 (2006). [CrossRef]
  9. S. Gross, M. Ams, D. Lancaster, T. Monro, A. Fuerbach, and M. Withford, Opt. Lett. 37, 3999 (2012). [CrossRef]
  10. G. Brown, R. Thomson, A. Kar, N. Psaila, and H. Bookey, Opt. Lett. 37, 491 (2012). [CrossRef]
  11. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997). [CrossRef]
  12. R. Feced and M. Zervas, J. Lightwave Technol. 18, 90 (2000). [CrossRef]
  13. C. Voigtländer, P. Zeil, J. Thomas, M. Ams, R. J. Williams, M. J. Withford, A. Tünnermann, and S. Nolte, Proc. SPIE 7925, 79250Y (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited