OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 14 — Jul. 15, 2013
  • pp: 2455–2458

Evanescent-wave-induced frequency shift for optical superresolution imaging

Xiang Hao, Cuifang Kuang, Yanghui Li, and Xu Liu  »View Author Affiliations

Optics Letters, Vol. 38, Issue 14, pp. 2455-2458 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (572 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a method to enhance the resolution and break the diffraction limit. The superresolution imaging is realized by incorporating total internal reflection (TIR) illumination with a passive spatial frequency shift mechanism. Meanwhile, TIR supplies a surface field with a limited penetration depth, which demonstrates that the axial resolution can be improved simultaneously. The superresolution capability is confirmed both theoretically and experimentally. Compared with microfiber-based former work, this idea possesses promising merits, providing a wider viewing field and a simpler configuration for variable illumination orientations, thereby implying abundant application potentials.

© 2013 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(350.5730) Other areas of optics : Resolution
(110.2945) Imaging systems : Illumination design

ToC Category:
Imaging Systems

Original Manuscript: May 10, 2013
Revised Manuscript: June 10, 2013
Manuscript Accepted: June 11, 2013
Published: July 9, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Xiang Hao, Cuifang Kuang, Yanghui Li, and Xu Liu, "Evanescent-wave-induced frequency shift for optical superresolution imaging," Opt. Lett. 38, 2455-2458 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873). [CrossRef]
  2. M. Lauterbach, Opt. Nanosc. 1, 8 (2012). [CrossRef]
  3. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994). [CrossRef]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006). [CrossRef]
  5. M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006). [CrossRef]
  6. M. G. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005). [CrossRef]
  7. M. G. L. Gustafsson, J. Microsc. 198, 82 (2000). [CrossRef]
  8. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Proc. Natl. Acad. Sci. USA 106, 22287 (2009). [CrossRef]
  9. G. Di Francia, Nuovo Cimento 9, 426 (1952).
  10. E. A. Ash and G. Nicholls, Nature 237, 510 (1972). [CrossRef]
  11. I. I. Smolyaninov, C. C. Davis, J. Elliott, and A. V. Zayats, Opt. Lett. 30, 382 (2005). [CrossRef]
  12. I. I. Smolyaninov, C. C. Davis, and A. V. Zayats, New J. Phys. 7, 175 (2005). [CrossRef]
  13. X. Zhang and Z. W. Liu, Nat. Mater. 7, 435 (2008). [CrossRef]
  14. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011). [CrossRef]
  15. X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, Appl. Phys. Lett. 99, 203102 (2011). [CrossRef]
  16. X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013). [CrossRef]
  17. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  18. L. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, Eur. Biophys. J. 38, 807 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited