OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 14 — Jul. 15, 2013
  • pp: 2466–2468

Improved switching using Fano resonances in photonic crystal structures

Mikkel Heuck, Philip Trøst Kristensen, Yuriy Elesin, and Jesper Mørk  »View Author Affiliations


Optics Letters, Vol. 38, Issue 14, pp. 2466-2468 (2013)
http://dx.doi.org/10.1364/OL.38.002466


View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple and robust structure for realizing asymmetric Fano transmission characteristics in photonic crystal waveguide-cavity structures. The use of Fano resonances for optical switching is analyzed using temporal coupled mode theory in combination with three-dimensional finite difference time domain simulations taking into account the signal bandwidth. The results suggest a significant energy reduction by employing Fano resonances compared to more well established Lorentzian resonance structures. A specific example of a Kerr nonlinearity shows an order of magnitude energy reduction.

© 2013 Optical Society of America

OCIS Codes
(130.4815) Integrated optics : Optical switching devices
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 22, 2013
Revised Manuscript: May 21, 2013
Manuscript Accepted: May 22, 2013
Published: July 9, 2013

Citation
Mikkel Heuck, Philip Trøst Kristensen, Yuriy Elesin, and Jesper Mørk, "Improved switching using Fano resonances in photonic crystal structures," Opt. Lett. 38, 2466-2468 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-14-2466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Fano, Phys. Rev. 124, 1866 (1961). [CrossRef]
  2. A. E. Miroschnichenko, S. Flach, and Y. Kivshar, Rev. Mod. Phys. 82, 2257 (2010). [CrossRef]
  3. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Phys. 9, 707 (2010). [CrossRef]
  4. S. F. Mingaleev, A. E. Miroschnichenko, and Y. Kivshar, Opt. Express 16, 11647 (2008). [CrossRef]
  5. S. Fan, App. Phys. Lett. 80, 908 (2002). [CrossRef]
  6. A. R. Cowan and J. F. Young, Phys. Rev. E 68, 046606 (2003). [CrossRef]
  7. A. E. Miroschnichenko and Y. Kivshar, Phys. Rev. E 72, 056611 (2005). [CrossRef]
  8. K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, Opt. Express 21, 11877 (2013). [CrossRef]
  9. X. Yang, C. Husko, C. W. Wong, M. Yu, and D. Kwong, App. Phys. Lett. 91, 051113 (2007). [CrossRef]
  10. K. K. Mehta, J. S. Orcutt, and R. J. Ram, Appl. Phys. Lett. 102, 081109 (2013). [CrossRef]
  11. S. Fan, W. Suh, and J. D. Joannopoulos, J. Opt. Soc. Am. A 20, 569 (2003). [CrossRef]
  12. M. Heuck, P. T. Kristensen, and J. Mørk, Opt. Express 19, 18410 (2011). [CrossRef]
  13. C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, Appl. Phys. Lett. 94, 021111 (2009). [CrossRef]
  14. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, Nat. Photonics 4, 477 (2010). [CrossRef]
  15. A. Taflove and S. C. Hagnes, Computational Electrodynamics–The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  16. Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Time domain topology optimization of 3D nanotonic devices,” Photon. Nanostructures, submitted for publication.
  17. Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, Appl. Phys. Lett. 101, 25 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited