OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 14 — Jul. 15, 2013
  • pp: 2481–2483

Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations

C. Ruiz Zamarreño, P. Zubiate, M. Sagües, I. R. Matias, and F. J. Arregui  »View Author Affiliations


Optics Letters, Vol. 38, Issue 14, pp. 2481-2483 (2013)
http://dx.doi.org/10.1364/OL.38.002481


View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This Letter, presents the fabrication of lossy mode resonance (LMR) devices based on titanium dioxide (TiO2)/ poly(sodium 4-styrenesulfonate) (PSS) coatings deposited on side-polished D-shaped optical fibers. TiO2 thin films have been obtained by means of the layer-by-layer (LbL) self-assembly technique. LbL enables us to produce smooth and homogeneous coatings on the polished side of the fiber. This permits us to couple light from the waveguide to the TiO2-coating/external medium region at specific wavelength ranges. The generation of LMRs depends on the coating thickness, so that thicker coatings can produce more resonances. LMRs are sensitive to the external medium refractive index, which allows its utilization as refractometers. The characteristic D-shaped architecture of the devices employed in this Letter enables us to distinguish TE and TM polarizations, which had not been possible before with regular optical fibers due to their cylindrical symmetry. The results presented here show for the first time the experimental demonstration of the generation of LMRs produced by both TM and TE polarizations. More specifically, for these TiO2/PSS thin films, the TM and TM modes of the LMRs show a wavelength shift of 226 nm for the first-order LMR and 56 nm for the second-order LMR.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.0310) Optics at surfaces : Thin films
(260.5740) Physical optics : Resonance
(300.1030) Spectroscopy : Absorption
(230.2285) Optical devices : Fiber devices and optical amplifiers
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Physical Optics

History
Original Manuscript: February 5, 2013
Revised Manuscript: March 25, 2013
Manuscript Accepted: April 19, 2013
Published: July 9, 2013

Citation
C. Ruiz Zamarreño, P. Zubiate, M. Sagües, I. R. Matias, and F. J. Arregui, "Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations," Opt. Lett. 38, 2481-2483 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-14-2481


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Marciniak, J. Grzegorzewski, and M. Szustakowski, IEE Proc. J. 140, 247 (1993). [CrossRef]
  2. R. F. Carson and T. E. Batchman, Appl. Opt. 29, 2769 (1990). [CrossRef]
  3. F. Yang and J. R. Sambles, J. Mod. Opt. 44, 1155 (1997). [CrossRef]
  4. D. Razansky, P. D. Einziger, and D. R. Adam, Phys. Rev. Lett. 95, 018101 (2005). [CrossRef]
  5. I. del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, J. Lightwave Technol. 28, 3351 (2010). [CrossRef]
  6. I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, Appl. Opt. 51, 4298 (2012). [CrossRef]
  7. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
  8. R. C. Jorgenson and S. S. Yee, Sens. Actuators B 12, 213 (1993). [CrossRef]
  9. D. Monzón-Hernández, J. Villatoro, D. Talavera, and D. Luna-Moreno, Appl. Opt. 43, 1216 (2004). [CrossRef]
  10. B. Lee, S. Roh, and J. Park, Opt. Fiber Technol. 15, 209 (2009). [CrossRef]
  11. R. Magnusson and S. S. Wang, Appl. Opt. 32, 2606 (1993). [CrossRef]
  12. C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, Sens. Actuators B 175106 (2012). [CrossRef]
  13. M. Hernaez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, Appl. Opt. 49, 3980 (2010). [CrossRef]
  14. C. R. Zamarreño, P. Sanchez, M. Hernaez, I. Del Villar, C. Fernandez-Valdivielso, F. J. Arregui, and I. R. Matias, IEEE Photon. Technol. Lett. 22, 1778 (2010).
  15. C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, Sens. Actuators B 155, 290 (2011). [CrossRef]
  16. A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov, J. Opt. Pure Appl. Opt. 10, 035303 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited