OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 14 — Jul. 15, 2013
  • pp: 2496–2498

Experimental demonstration of a hybrid III–V-on-silicon microlaser based on resonant grating cavity mirrors

Yannick de Koninck, Fabrice Raineri, Alexandre Bazin, Rama Raj, Gunther Roelkens, and Roel Baets  »View Author Affiliations

Optics Letters, Vol. 38, Issue 14, pp. 2496-2498 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the experimental demonstration of a novel class of hybrid III–V-on-silicon microlasers. We show that by coupling a silicon cavity to a III–V waveguide, the interaction between the propagating mode in the III–V waveguide and the cavity mode in the silicon resonator results in high, narrowband reflection back into the III–V waveguide, forming a so-called resonant mirror. By combining two such mirrors and providing optical gain in the III–V wire between these two mirrors, laser operation can be realized. This optically pumped device measures 55 by 2 μm, requires microwatt-level threshold pump power, and shows single-mode laser emission with a side-mode suppression ratio of up to 39 dB.

© 2013 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3948) Lasers and laser optics : Microcavity devices
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 22, 2013
Revised Manuscript: June 10, 2013
Manuscript Accepted: June 12, 2013
Published: July 10, 2013

Yannick de Koninck, Fabrice Raineri, Alexandre Bazin, Rama Raj, Gunther Roelkens, and Roel Baets, "Experimental demonstration of a hybrid III–V-on-silicon microlaser based on resonant grating cavity mirrors," Opt. Lett. 38, 2496-2498 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, Laser Photon. Rev. 4, 751 (2010). [CrossRef]
  2. S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. van Thourhout, IEEE Photon. Technol. Lett. 24, 2155 (2012). [CrossRef]
  3. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, Opt. Express 19, 9221 (2011). [CrossRef]
  4. C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-m. Fedeli, and P. Viktorovitch, IEEE Photon. Technol. Lett. 24, 455 (2012). [CrossRef]
  5. Y. de Koninck, G. Roelkens, and R. Baets, IEEE Photon. J. 5, 2700413 (2013). [CrossRef]
  6. H. A. Haus and Y. Lai, J. Lightwave Technol. 9, 754 (1991). [CrossRef]
  7. K. Debnath, K. Welna, M. Ferrera, K. Deasy, D. G. Lidzey, and L. O’Faolain, Opt. Lett. 38, 154 (2013). [CrossRef]
  8. ePIXfab: the silicon photonics platform (2012), http://www. epixfab.eu .
  9. Y. de Koninck, F. Raineri, A. Bazin, R. Raj, G. Roelkens, and R. Baets, in 2012 IEEE Photonics Conference (IPC 2012) (IEEE, 2012), pp. 1–2.
  10. M. Tassaert, D. van Thourhout, and G. Roelkens, Opt. Quantum Electron. 44, 683 (2012). [CrossRef]
  11. B. Ben Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli, Opt. Express 19, 10317 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited