OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 14 — Jul. 15, 2013
  • pp: 2546–2549

Physics-based simulation of the modulation transfer function in HgCdTe infrared detector arrays

Benjamin Pinkie, Jonathan Schuster, and Enrico Bellotti  »View Author Affiliations

Optics Letters, Vol. 38, Issue 14, pp. 2546-2549 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a numerical technique for performing physics-based simulations of the modulation transfer function (MTF) of infrared detector focal plane arrays. The finite-difference time-domain and finite element methods are employed to determine the electromagnetic and electrical response, respectively. We show how the total MTF can be decomposed to analyze the effect of lateral diffusion of charge carriers and present several methods for mitigation of such effects. We employ our numerical technique to analyze the MTF of a HgCdTe two-color bias-selectable infrared detector array.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(110.4100) Imaging systems : Modulation transfer function

ToC Category:

Original Manuscript: May 23, 2013
Revised Manuscript: June 11, 2013
Manuscript Accepted: June 17, 2013
Published: July 11, 2013

Benjamin Pinkie, Jonathan Schuster, and Enrico Bellotti, "Physics-based simulation of the modulation transfer function in HgCdTe infrared detector arrays," Opt. Lett. 38, 2546-2549 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009). [CrossRef]
  2. E. G. Stevens, IEEE Trans. Electron Devices 39, 2621 (1992). [CrossRef]
  3. D. T. Cheung, Infrared Phys. 21, 301 (1981). [CrossRef]
  4. D. Levy, S. E. Schacham, and I. Kidron, IEEE Trans. Electron. Devices 34, 2059 (1987). [CrossRef]
  5. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  6. C. A. Keasler and E. Bellotti, J. Electron. Mater. 40, 1795 (2011). [CrossRef]
  7. B. Pinkie and E. Bellotti, “Numerical simulation of spatial and spectral crosstalk in two-color MWIR/LWIR HgCdTe infrared detector arrays,” J. Electron. Mater. (to be published).
  8. K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966). [CrossRef]
  9. J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Topics Quantum Electron. 19, 3800415 (2013). [CrossRef]
  10. D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008). [CrossRef]
  11. E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006). [CrossRef]
  12. J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, 1978).
  13. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).
  14. S. K. Park, R. Schowengerdt, and M. A. Kaczynski, Appl. Opt. 23, 2572 (1984). [CrossRef]
  15. L. C. Ma and R. Mittra, in Proceedings of 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), p. 1665.
  16. W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5783, 331 (2005). [CrossRef]
  17. J. G. A. Wehner, E. P. G. Smith, W. Radford, and C. L. Mears, J. Electron. Mater. 41, 2925 (2012). [CrossRef]
  18. D. S. Hobbs and B. D. MacLeod, Proc. SPIE 5786, 349 (2005). [CrossRef]
  19. J. Schuster and E. Bellotti, Appl. Phys. Lett. 101, 261118 (2012). [CrossRef]
  20. J. Schuster and E. Bellotti, Opt. Express 21, 14712 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited