OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 14 — Jul. 15, 2013
  • pp: 2550–2553

Imaging performance of Bessel beam microscopy

Craig Snoeyink  »View Author Affiliations

Optics Letters, Vol. 38, Issue 14, pp. 2550-2553 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This Letter analyzes the imaging performance of Bessel beam microscopy (BBM), an imaging technique that places an axicon in the light path of a microscope. Like other superresolution imaging techniques that attempt to narrow the point spread function, in BBM there is a trade-off between spatial resolution and relative brightness of the images. The performance of BBM is analyzed using two parameters, gain and Strehl ratio, which measure the relative spatial resolution increase and relative brightness of the images, respectively. Analytical relationships for both of these parameters are provided and compared to results calculated from simulations. Finally, an optimized BBM system design is presented which has a gain of 0.7 and a Strehl ratio of 0.9.

© 2013 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(100.6640) Image processing : Superresolution
(170.0180) Medical optics and biotechnology : Microscopy

ToC Category:
Imaging Systems

Original Manuscript: May 10, 2013
Revised Manuscript: June 16, 2013
Manuscript Accepted: June 17, 2013
Published: July 11, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Craig Snoeyink, "Imaging performance of Bessel beam microscopy," Opt. Lett. 38, 2550-2553 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. McLeod, J. Opt. Soc. Am. 44, 592 (1954). [CrossRef]
  2. C. Snoeyink and S. Wereley, Opt. Lett. 37, 2058 (2012). [CrossRef]
  3. C. Snoeyink and S. Wereley, Exp. Fluids 54, 1453 (2013). [CrossRef]
  4. C. Snoeyink and S. Wereley, Opt. Lett. 38, 625 (2013). [CrossRef]
  5. B. Huang, M. Bates, and X. Zhuang, Annu. Rev. Biochem. 78, 993 (2009). [CrossRef]
  6. S. W. Hell, Science 316, 1153 (2007). [CrossRef]
  7. G. Toraldo di Francia, Nuovo Cimento Suppl. 9, 426435 (1952).
  8. T. R. Sales and G. M. Morris, Opt. Lett. 22, 582 (1997). [CrossRef]
  9. D. M. De Juana, J. E. Oti, V. F. Canales, and M. P. Cagigal, Opt. Lett. 28, 607 (2003). [CrossRef]
  10. H. Ding, Q. Li, and W. Zou, Opt. Commun. 229, 117 (2004). [CrossRef]
  11. M. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, Opt. Lett. 25, 2457 (2000).
  12. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Co., 2004), p. 491.
  13. J. B. Arroyo and G. M. Niconoff, Spectrum 56, 159 (2010).
  14. F. J. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1992), p. 672.
  15. J. Collins, J. Opt. Soc. Am. 60, 1168 (1970). [CrossRef]
  16. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited