OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 15 — Aug. 1, 2013
  • pp: 2729–2731

Depletion-mode polysilicon optical modulators in a bulk complementary metal-oxide semiconductor process

Jeffrey M. Shainline, Jason S. Orcutt, Mark T. Wade, Kareem Nammari, Ofer Tehar-Zahav, Zvi Sternberg, Roy Meade, Rajeev J. Ram, Vladimir Stojanović, and Miloš A. Popović  »View Author Affiliations


Optics Letters, Vol. 38, Issue 15, pp. 2729-2731 (2013)
http://dx.doi.org/10.1364/OL.38.002729


View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate depletion-mode carrier-plasma optical modulators fabricated in a bulk complementary metal-oxide semiconductor (CMOS), DRAM-emulation process. To the best of our knowledge, these are the first depletion-mode modulators demonstrated in polycrystalline silicon and in bulk CMOS. The modulators are based on novel optical microcavities that utilize periodic spatial interference of two guided modes to create field nulls along waveguide sidewalls. At these nulls, electrical contacts can be placed while preserving a high optical Q. These cavities enable active devices in a process with no partial silicon etch and with lateral pn junctions. We demonstrate two device variants at 5 Gbps data modulation rate near 1610 nm wavelength. One design shows 3.1 dB modulation depth with 1.5 dB insertion loss and an estimated 160fJ/bit energy consumption, while a more compact device achieves 4.2 dB modulation depth with 4.0 dB insertion loss and 60fJ/bit energy consumption. These modulators represent a significant breakthrough in enabling active photonics in bulk silicon CMOS—the platform of the majority of microelectronic logic and DRAM processes—and lay the groundwork for monolithically integrated CMOS-to-DRAM photonic links.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(250.4110) Optoelectronics : Modulators

ToC Category:
Optoelectronics

History
Original Manuscript: May 16, 2013
Revised Manuscript: June 30, 2013
Manuscript Accepted: June 30, 2013
Published: July 24, 2013

Citation
Jeffrey M. Shainline, Jason S. Orcutt, Mark T. Wade, Kareem Nammari, Ofer Tehar-Zahav, Zvi Sternberg, Roy Meade, Rajeev J. Ram, Vladimir Stojanović, and Miloš A. Popović, "Depletion-mode polysilicon optical modulators in a bulk complementary metal-oxide semiconductor process," Opt. Lett. 38, 2729-2731 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-15-2729


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popović, H. Li, H. Smith, J. Hoyt, F. Kärtner, R. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009). [CrossRef]
  2. J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, Opt. Express 20, 12222 (2012). [CrossRef]
  3. J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, B. Moss, M. Georgas, C. Sun, R. J. Ram, V. Stojanović, and M. A. Popović, “Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS,” Opt. Lett., doc. ID 190228 (posted 10 June 2013, in press).
  4. D. J. Shin, K. S. Cho, H.-C. Ji, B. S. Lee, S. G. Kim, J. K. Bok, S. H. Choi, Y. H. Shin, J. H. Kim, S. Y. Lee, K. Y. Cho, B. J. Kuh, J. H. Shin, J. S. Lim, J. M. Kim, H. M. Choi, K. H. Ha, Y. D. Park, and C. H. Chung, in Optical Fiber Communication Conference, March 2013 (Optical Society of America, 2013), paper OTu2C.4.
  5. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, Opt. Express 17, 5118 (2009). [CrossRef]
  6. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, Opt. Express 19, 20435 (2011). [CrossRef]
  7. J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, Opt. Express 20, 26411 (2012). [CrossRef]
  8. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, Opt. Express 19, 21989 (2011). [CrossRef]
  9. R. Meade, O. Tehar-Zahav, Z. Sternberg, E. Megged, G. Sandhu, J. S. Orcutt, R. Ram, V. Stojanović, M. R. Watts, E. Timurdogan, J. Shainline, and M. Popović, in Optical Interconnects Conference, March 2013 (IEEE, 2013), paper WC1.
  10. J. Hofrichter, O. Raz, A. La Porta, T. Morf, P. Mechet, G. Morthier, T. De Vries, H. J. S. Dorren, and B. J. Offrein, Opt. Express 20, 9363 (2012). [CrossRef]
  11. J. M. Shainline, J. Orcutt, M. T. Wade, R. Meade, O. Tehar-Zahav, Z. Sternberg, V. Stojanović, and M. Popović, in Conference on Lasers and Electro-Optics, June 2013 (Optical Society of America, 2013), paper CM1F.2.
  12. E.-G. Neumann, IEE Proc. Microw. Antennas Propag. 129, 278 (1982). [CrossRef]
  13. J. Y. W. Seto, J. Appl. Phys. 46, 5247 (1975). [CrossRef]
  14. Y. Liu and M. Popović, in Integrated Photonics Research, July 2013 (Optical Society of America, 2013), paper 1706135.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited