OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 15 — Aug. 1, 2013
  • pp: 2767–2769

General algorithm to optimize the diffraction efficiency of a phase-type spatial light modulator

Matthew A. Cibula and David H. McIntyre  »View Author Affiliations

Optics Letters, Vol. 38, Issue 15, pp. 2767-2769 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a general approach for optimizing the diffraction efficiency of a phase-type spatial light modulator (SLM). While the SLM displays a one-dimensional phase grating, the phase shift of one pixel in the grating is varied and the first-order diffraction efficiency is measured. This is repeated pixel-by-pixel to find the optimum phase encoding for the device that maximizes the diffraction efficiency. This method compensates for nonlinearity of the modulator phase response and is especially useful for optimizing modulators with less than 2π phase shift.

© 2013 Optical Society of America

OCIS Codes
(090.1970) Holography : Diffractive optics
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(230.6120) Optical devices : Spatial light modulators
(260.1960) Physical optics : Diffraction theory
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: April 8, 2013
Revised Manuscript: July 1, 2013
Manuscript Accepted: July 1, 2013
Published: July 26, 2013

Matthew A. Cibula and David H. McIntyre, "General algorithm to optimize the diffraction efficiency of a phase-type spatial light modulator," Opt. Lett. 38, 2767-2769 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Grier, Nature 424, 810 (2003). [CrossRef]
  2. N. Savage, Nat. Photonics 3, 170 (2009). [CrossRef]
  3. M. Padgett and R. Di Leonardo, Lab Chip 11, 1196 (2011). [CrossRef]
  4. K. Dholakia and T. Cizmar, Nat. Photonics 5, 335 (2011). [CrossRef]
  5. R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, Eur. J. Phys. 199, 149 (2011). [CrossRef]
  6. J. Hahn, H. Kim, and B. Lee, Appl. Opt. 47, D87 (2008). [CrossRef]
  7. H. Dammann, Optik 31, 95 (1970).
  8. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, Appl. Opt. 43, 6278 (2004). [CrossRef]
  9. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, Appl. Opt. 45, 897 (2006). [CrossRef]
  10. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, Opt. Express 16, 16711 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited