OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 16 — Aug. 15, 2013
  • pp: 2934–2937

Evaluation of disparate laser beam deflection technologies by means of number and rate of resolvable spots

Peter Bechtold, Ralph Hohenstein, and Michael Schmidt  »View Author Affiliations

Optics Letters, Vol. 38, Issue 16, pp. 2934-2937 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (461 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a method to objectively evaluate systems of differing beam deflection technologies that commonly are described by disparate technical specifications. Using our new approach based on resolvable spots we will compare commercially available random-access beam deflection technologies, namely galvanometer scanners, piezo scanners, MEMS scanners, acousto-optic deflectors, and electro-optic deflectors.

© 2013 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(120.5800) Instrumentation, measurement, and metrology : Scanners
(080.4035) Geometric optics : Mirror system design

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 24, 2013
Revised Manuscript: July 11, 2013
Manuscript Accepted: July 15, 2013
Published: August 2, 2013

Peter Bechtold, Ralph Hohenstein, and Michael Schmidt, "Evaluation of disparate laser beam deflection technologies by means of number and rate of resolvable spots," Opt. Lett. 38, 2934-2937 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Schille, R. Ebert, P. Regenfuss, T. Suess, and H. Exner, in Proceedings of LPM2008 (Japan Laser Processing Society, 2008), pp. 1–6.
  2. S. Bruening, G. Hennig, S. Eifel, and A. Gillner, Phys. Procedia 12, 105 (2011). [CrossRef]
  3. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, Opt. Lett. 35, 4169 (2010). [CrossRef]
  4. V. Iyer, J. Neurophysiol. 95, 535 (2005). [CrossRef]
  5. P. A. Kirkby, K. M. N. Srinivas Nadella, and R. A. Silver, Opt. Express 18, 13720 (2010). [CrossRef]
  6. M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2010).
  7. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).
  8. H. Urey, Appl. Opt. 43, 620 (2004). [CrossRef]
  9. I. Chang, IEEE Trans. Sonics Ultrason. 23, 2 (1976). [CrossRef]
  10. P. Bechtold, R. Hohenstein, and M. Schmidt, Opt. Express 21, 14627 (2013). [CrossRef]
  11. B. A. Ngoi, K. Venkatakrishnan, L. Lim, and B. Tan, Opt. Express 9, 200 (2001). [CrossRef]
  12. P. Bechtold, D. Bauer, and M. Schmidt, Phys. Procedia 39, 683 (2012). [CrossRef]
  13. K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, J. Appl. Phys. 104, 13105 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited