OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 16 — Aug. 15, 2013
  • pp: 2949–2952

Weak-values technique for velocity measurements

Gerardo I. Viza, Julián Martínez-Rincón, Gregory A. Howland, Hadas Frostig, Itay Shomroni, Barak Dayan, and John C. Howell  »View Author Affiliations

Optics Letters, Vol. 38, Issue 16, pp. 2949-2952 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a recent Letter, Brunner and Simon proposed an interferometric scheme using imaginary weak values with a frequency-domain analysis to outperform standard interferometry in longitudinal phase shifts [Phys. Rev. Lett 105, 010405 (2010)]. Here we demonstrate an interferometric scheme combined with a time-domain analysis to measure longitudinal velocities. The technique employs the near-destructive interference of non-Fourier limited pulses, one Doppler shifted due to a moving mirror in a Michelson interferometer. We achieve a velocity measurement of 400fm/s and show our estimator to be efficient by reaching its Cramér–Rao bound.

© 2013 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.5260) Coherence and statistical optics : Photon counting
(030.5290) Coherence and statistical optics : Photon statistics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 14, 2013
Manuscript Accepted: June 27, 2013
Published: August 5, 2013

Gerardo I. Viza, Julián Martínez-Rincón, Gregory A. Howland, Hadas Frostig, Itay Shomroni, Barak Dayan, and John C. Howell, "Weak-values technique for velocity measurements," Opt. Lett. 38, 2949-2952 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. R. Rao, Proc. Cambridge Philos. Soc. 43, 280283 (1946).
  2. T. Pfister, A. Fischer, and J. Czarske, Meas. Sci. Technol. 22, 055301 (2011). [CrossRef]
  3. D. J. Starling, P. B. Dixon, N. S. Williams, A. N. Jordan, and J. C. Howell, Phys. Rev. A 82, 011802 (2010). [CrossRef]
  4. C.-F. Li, X.-Y. Xu, J.-S. Tang, J.-S. Xu, and G.-C. Guo, Phys. Rev. A 83, 044102 (2011). [CrossRef]
  5. N. Brunner and C. Simon, Phys. Rev. Lett. 105, 010405 (2010). [CrossRef]
  6. J. C. Howell, D. J. Starling, P. B. Dixon, P. K. Vudyasetu, and A. N. Jordan, Phys. Rev. A 81, 033813 (2010). [CrossRef]
  7. P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys. Rev. Lett. 102, 173601 (2009). [CrossRef]
  8. V. Giovannetti, S. Lloyd, and L. Maccone, Nature 412, 417 (2001). [CrossRef]
  9. P. R. Kaczmarek, T. Rogowski, A. J. Antonczak, and K. M. Abramski, Opt. Appl. 34, 373 (2004).
  10. J. Guéna, R. Li, K. Gibble, S. Bize, and A. Clairon, Phys. Rev. Lett. 106, 130801 (2011). [CrossRef]
  11. A. H. Meier and T. Roesgen, Exp. Fluids 52, 1017 (2012). [CrossRef]
  12. T. O. H. Charrett, S. W. James, and R. P. Tatam, Meas. Sci. Technol. 23, 032001 (2012). [CrossRef]
  13. J. W. Czarske and H. Muller, Opt. Commun. 132, 421 (1996). [CrossRef]
  14. L. Scalise, Y. G. Yu, G. Giuliani, G. Plantier, and T. Bosch, IEEE Trans. Instrum. Meas. 53, 223 (2004). [CrossRef]
  15. S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011). [CrossRef]
  16. D. J. Starling, P. B. Dixon, A. N. Jordan, and J. C. Howell, Phys. Rev. A 82, 063822 (2010). [CrossRef]
  17. Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988). [CrossRef]
  18. A. Feizpour, X. Xing, and A. M. Steinberg, Phys. Rev. Lett. 107, 133603 (2011). [CrossRef]
  19. O. Hosten and P. Kwiat, Science 319, 787 (2008). [CrossRef]
  20. J. S. Laudeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, Nature 474, 188 (2011). [CrossRef]
  21. S. Massar and S. Popescu, Phys. Rev. A 84, 052106 (2011). [CrossRef]
  22. H. F. Hofmann, M. E. Goggin, M. P. Almeida, and M. Barbieri, Phys. Rev. A 86, 040102 (2012). [CrossRef]
  23. J. Martínez-Rincón and J. C. Howell, “Cramer–Rao bound and weak values,” in preparation.
  24. G. Strübi and C. Bruder, Phys. Rev. Lett. 110, 083605 (2013). [CrossRef]
  25. Y. Kedem, Phys. Rev. A 85, 060102 (2012). [CrossRef]
  26. F. Zernike, Physica 9, 686 (1942). [CrossRef]
  27. The system is prepared in the state |Ψ〉∝exp[−t2/4τ2](|M〉+|P〉)⊗|α〉, where the states |M〉 and |P〉 correspond to which arm (mirror or piezo-driven mirror) the light goes though, and |α〉 is the coherent light state representation. The interaction can be expressed as U≈exp[−iωdt/2A^], where ωd=2πfd and A^=|M〉〈M|−|P〉〈P|. The final postselection is given by [|M〉−exp(i2ϕ)|P〉]/2. This gives a pure imaginary weak value protocol, where Aw=−i cot ϕ≈−i/ϕ.
  28. P. Réfrégier, Noise Theory and Application to Physics (Springer, 2004).
  29. S. M. Kay, Fundamentals of Statistical Signal Processing (Prentice-Hall, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited