OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 16 — Aug. 15, 2013
  • pp: 2961–2964

Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications

Shibnath Pathak, Dries Van Thourhout, and Wim Bogaerts  »View Author Affiliations

Optics Letters, Vol. 38, Issue 16, pp. 2961-2964 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate compact silicon-on-insulator-based arrayed waveguide gratings (AWGs) for (de)multiplexing applications with a large free spectral range (FSR). The large FSR is obtained by reducing the arm aperture pitch without changing the device footprint. We demonstrate 4×100GHz, 8×250GHz, and 12×400GHz AWGs with FSRs of 6.9, 24.8, and 69.8, respectively. We measured an insertion loss from 2.45dB for high to 0.53dB for low-resolution AWGs. The crosstalk varies between 17.12 and 21.37 dB. The bandwidth remains nearly constant, and the nonuniformity between the center wavelength channel and the outer wavelength channel improves with larger FSR values.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.1750) Integrated optics : Components
(130.3120) Integrated optics : Integrated optics devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: June 17, 2013
Revised Manuscript: July 11, 2013
Manuscript Accepted: July 11, 2013
Published: August 5, 2013

Shibnath Pathak, Dries Van Thourhout, and Wim Bogaerts, "Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications," Opt. Lett. 38, 2961-2964 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 1182 (2001).
  2. C. Dragone, IEEE Photon. Technol. Lett. 3, 812 (1991). [CrossRef]
  3. R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, J. Lightwave Technol. 11, 212 (1993). [CrossRef]
  4. R. Mestric, H. Bissessur, B. Martin, and A. Pinquier, IEEE Photon. Technol. Lett. 8, 638 (1996). [CrossRef]
  5. W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010). [CrossRef]
  6. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, J. Lightwave Technol. 31, 87 (2013). [CrossRef]
  7. J. Zou, X. Jiang, X. Xia, T. Lang, and J.-J. He, J. Lightwave Technol. 31, 1935 (2013).
  8. A. Klekamp and R. Munzner, J. Lightwave Technol. 21, 1978 (2003). [CrossRef]
  9. S. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, J. Lightwave Technol. 27, 4076 (2009). [CrossRef]
  10. F. van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. Krauss, and R. Baets, J. Lightwave Technol. 25, 151 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited