OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 16 — Aug. 15, 2013
  • pp: 3009–3012

Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons

Amin Khavasi  »View Author Affiliations


Optics Letters, Vol. 38, Issue 16, pp. 3009-3012 (2013)
http://dx.doi.org/10.1364/OL.38.003009


View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Li’s Fourier factorization rules [J. Opt. Soc. Am. A 13, 1870 (1996)] should be applied to achieve a fast convergence rate in the analysis of diffraction gratings with the Fourier modal method. I show, however, that Li’s inverse rule cannot be applied for periodic patterns of graphene when the conventional boundary condition is used. I derive an approximate boundary condition in which a nonzero but sufficiently small height is assumed for the boundary. The proposed boundary condition enables us to apply the inverse rule, leading to a significantly improved convergence rate. A periodic array of graphene ribbons is in fact a special type of finite-conductivity strip grating, and thus the proposed approach is also applicable to these kinds of structures.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 4, 2013
Revised Manuscript: July 9, 2013
Manuscript Accepted: July 9, 2013
Published: August 7, 2013

Citation
Amin Khavasi, "Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons," Opt. Lett. 38, 3009-3012 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-16-3009


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). [CrossRef]
  2. A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat. Photonics 6, 749 (2012). [CrossRef]
  3. A. Vakil and N. Engheta, Science 332, 1291 (2011). [CrossRef]
  4. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011). [CrossRef]
  5. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, Nat. Nanotechnol. 5, 574 (2010). [CrossRef]
  6. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, ACS Nano 6, 431 (2012). [CrossRef]
  7. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, Phys. Rev. B 85, 081405 (2012). [CrossRef]
  8. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, Opt. Express 20, 28017 (2012). [CrossRef]
  9. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010). [CrossRef]
  10. M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).
  11. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981). [CrossRef]
  12. L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, Appl. Opt. 38, 304 (1999). [CrossRef]
  13. A. Khavasi, K. Mehrany, and B. Rashidian, J. Opt. Soc. Am. B 24, 2676 (2007). [CrossRef]
  14. A. Khavasi, A. Kazemi Jahromi, and K. Mehrany, J. Opt. Soc. Am. A 25, 1564 (2008). [CrossRef]
  15. R. Hall and R. Mittra, IEEE Trans. Antennas Propag. 33, 1009 (1985). [CrossRef]
  16. R. Hall, R. Mittra, and K. Mitzner, IEEE Trans. Antennas Propag. 36, 504 (1988). [CrossRef]
  17. K. Uchida, T. Noda, and T. Matsunaga, IEEE Trans. Antennas Propag. 35, 46 (1987). [CrossRef]
  18. K. Uchida, T. Noda, and T. Matsunaga, IEEE Trans. Antennas Propag. 36, 415 (1988). [CrossRef]
  19. F. Montiel and M. Nevière, Opt. Commun. 101, 151 (1993). [CrossRef]
  20. S. Peng and C. Shiao, in Microwave Symposium Digest (IEEE, 1994), p. 879.
  21. L. Li, J. Opt. Soc. Am. A 13, 1870 (1996). [CrossRef]
  22. D. J. Griffiths and R. College, Introduction to Electrodynamics (Prentice Hall, 1999).
  23. F. H. Koppens, D. E. Chang, and F. J. García de Abajo, Nano Lett. 11, 3370 (2011). [CrossRef]
  24. S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, Phys. Rev. Lett. 108, 047401 (2012). [CrossRef]
  25. L. Li, J. Opt. Soc. Am. A 13, 1024 (1996). [CrossRef]
  26. A. Khavasi and K. Mehrany, IEEE Trans. Antennas Propag. 57, 1115 (2009). [CrossRef]
  27. A. Khavasi and K. Mehrany, Opt. Commun. 284, 3211 (2011). [CrossRef]
  28. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997). [CrossRef]
  29. ee.sharif.ir/~khavasi/index_files/Page1077.htm .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited