OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 16 — Aug. 15, 2013
  • pp: 3036–3039

Optical fiber in-line Mach–Zehnder interferometer based on dual internal mirrors formed by a hollow sphere pair

T. Y. Hu and D. N. Wang  »View Author Affiliations

Optics Letters, Vol. 38, Issue 16, pp. 3036-3039 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a fiber in-line Mach–Zehnder interferometer based on dual internal mirrors formed by a hollow sphere pair and fabricated by femtosecond laser micromachining together with the fusion splicing technique. The hollow sphere surface adjacent to the fiber core can reflect part of the incident light beam to the air–cladding interface, where the light beam is reflected again before returning to the fiber core by another hollow sphere surface and recombining with the light beam remaining in the fiber core. Such an interferometer is miniature and robust, and is sensitive to environmental variations and allows simultaneous surrounding refractive index, temperature, and curvature measurement.

© 2013 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.4040) Optical devices : Mirrors

ToC Category:
Optical Devices

Original Manuscript: May 2, 2013
Revised Manuscript: July 15, 2013
Manuscript Accepted: July 17, 2013
Published: August 7, 2013

T. Y. Hu and D. N. Wang, "Optical fiber in-line Mach–Zehnder interferometer based on dual internal mirrors formed by a hollow sphere pair," Opt. Lett. 38, 3036-3039 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. J. Yao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, Opt. Express 15, 14123 (2007). [CrossRef]
  2. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, Opt. Lett. 34, 2441 (2009). [CrossRef]
  3. L. B. Yuan, J. Yang, Z. Liu, and J. Sun, Opt. Lett. 31, 2692 (2006). [CrossRef]
  4. C. R. Liao, D. N. Wang, M. Wang, and M. Yang, IEEE Photon. Technol. Lett. 24, 2060 (2012). [CrossRef]
  5. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 29, 346 (2004). [CrossRef]
  6. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, IEEE Photon. Technol. Lett. 17, 1247 (2005). [CrossRef]
  7. J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, IEEE Photon. Technol. Lett. 18, 1258 (2006). [CrossRef]
  8. P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009). [CrossRef]
  9. Z. Tian, S. S.-H. Yam, and H. Loock, IEEE Photon. Technol. Lett. 20, 1387 (2008). [CrossRef]
  10. Y. Jung, S. Lee, B. H. Lee, and K. Oh, Opt. Lett. 33, 2934 (2008). [CrossRef]
  11. P. L. Swart, Meas. Sci. Technol. 15, 1576 (2004). [CrossRef]
  12. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, J. Opt. Soc. Am. B 27, 370 (2010). [CrossRef]
  13. T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, Opt. Lett. 37, 5082 (2012). [CrossRef]
  14. E. Cibula and D. Donlagic, Opt. Express 18, 12017 (2010). [CrossRef]
  15. C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, Opt. Express 16, 9645 (2008). [CrossRef]
  16. N. Liu, Y. Li, Y. Wang, H. Wang, W. Liang, and P. Lu, Opt. Express 19, 13880 (2011). [CrossRef]
  17. Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, Opt. Lasers Eng. 41, 233 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited