OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 17 — Sep. 1, 2013
  • pp: 3279–3282

Wideband switchable unidirectional transmission in a photonic crystal with a periodically nonuniform pupil

Andriy E. Serebryannikov and Akhlesh Lakhtakia  »View Author Affiliations

Optics Letters, Vol. 38, Issue 17, pp. 3279-3282 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wideband switchable diode-like transmission can be exhibited by an asymmetric dielectric photonic crystal, when the host medium is changed from air to a coherent atomic gas (CAG), a strongly dispersive medium. Significant modification of diffraction-enabled one-way transmission due to the CAG is possible in both frequency and incidence-angle domains in the short-wave infrared regime. In particular, new one-way and high-contrast passbands, which are as much as 1.0 THz in bandwidth, can appear at fixed incidence angle within a stop band of the CAG-free structure and tuned by varying the oscillator strength of the CAG. These passbands correspond to relatively small, either positive or negative, values of the dielectric susceptibility of the CAG.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.7000) Instrumentation, measurement, and metrology : Transmission
(020.1335) Atomic and molecular physics : Atom optics
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: June 4, 2013
Manuscript Accepted: June 25, 2013
Published: August 22, 2013

Andriy E. Serebryannikov and Akhlesh Lakhtakia, "Wideband switchable unidirectional transmission in a photonic crystal with a periodically nonuniform pupil," Opt. Lett. 38, 3279-3282 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, Opt. Express 16, 19504 (2008). [CrossRef]
  2. H. Wanare, J. Nanophoton. 4, 040304 (2010).
  3. A. E. Serebryannikov and A. Lakhtakia, J. Opt. Soc. Am. B 29, 328 (2012). [CrossRef]
  4. A. E. Serebryannikov, Phys. Rev. B 80, 155117 (2009).
  5. J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, Appl. Phys. Lett. 100, 213503 (2012). [CrossRef]
  6. A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, Opt. Express 20, 14980 (2012). [CrossRef]
  7. A. E. Serebryannikov, E. Colak, A. O. Cakmak, and E. Ozbay, Opt. Lett. 37, 4844 (2012). [CrossRef]
  8. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981). [CrossRef]
  9. A. E. Serebryannikov and A. Lakhtakia, Microw. Opt. Technol. Lett. 55, 1248 (2013). [CrossRef]
  10. S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990). [CrossRef]
  11. K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991). [CrossRef]
  12. J. P. Marangos, J. Mod. Opt. 45, 471 (1998). [CrossRef]
  13. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Sec. 7.3.
  14. T. Magath and A. E. Serebryannikov, J. Opt. Soc. Am. A 22, 2405 (2005). [CrossRef]
  15. A. E. Serebryannikov, K. B. Alici, T. Magath, A. O. Cakmak, and E. Ozbay, Phys. Rev. A 86, 053835 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited