OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 17 — Sep. 1, 2013
  • pp: 3355–3358

Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers

Yu-Han Hung and Sheng-Kwang Hwang  »View Author Affiliations


Optics Letters, Vol. 38, Issue 17, pp. 3355-3358 (2013)
http://dx.doi.org/10.1364/OL.38.003355


View Full Text Article

Enhanced HTML    Acrobat PDF (573 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For radio-over-fiber links, microwave-modulated optical carriers with high optical modulation depth are preferred because high optical modulation depth allows generation of high microwave power after photodetection, leading to high detection sensitivity, long transmission distance, and large link gain. This study investigates the period-one nonlinear dynamics of semiconductor lasers for optical modulation depth improvement to achieve photonic microwave amplification through modulation sideband enhancement. In our scheme, only typical semiconductor lasers are required as the amplification unit. The amplification is achieved for a broad microwave range, from less than 25 GHz to more than 60 GHz, and for a wide gain range, from less than 10 dB to more than 30 dB. The microwave phase quality is mainly preserved while the microwave power is largely amplified, improving the signal-to-noise ratio up to at least 25 dB. The bit-error ratio at 1.25Gbits/s is better than 109, and a sensitivity improvement of up to at least 15 dB is feasible.

© 2013 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.3100) Nonlinear optics : Instabilities and chaos
(350.4010) Other areas of optics : Microwaves

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 3, 2013
Revised Manuscript: July 21, 2013
Manuscript Accepted: August 6, 2013
Published: August 26, 2013

Citation
Yu-Han Hung and Sheng-Kwang Hwang, "Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers," Opt. Lett. 38, 3355-3358 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-17-3355


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Yao, J. Lightwave Technol. 27, 314 (2009). [CrossRef]
  2. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, IEEE Trans. Microwave Theory Tech. 54, 2181 (2006). [CrossRef]
  3. M. Attygalle, C. Lim, and A. Nirmalathas, J. Lightwave Technol. 24, 1703 (2006). [CrossRef]
  4. Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007). [CrossRef]
  5. A. Perentos, F. Cuesta-Soto, M. Rodrigo, A. Canciamilla, B. Vidal, L. Pierno, A. Griol, N. S. Losilla, L. Bellieres, F. Lopez-Royo, A. Melloni, and S. Iezekiel, Opt. Express 20, 25478 (2012). [CrossRef]
  6. K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994). [CrossRef]
  7. A. Loayssa, D. Benito, and M. J. Garde, Opt. Lett. 25, 197 (2000). [CrossRef]
  8. S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006). [CrossRef]
  9. S. K. Hwang, H. F. Chen, and C. Y. Lin, Opt. Lett. 34, 812 (2009). [CrossRef]
  10. C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012). [CrossRef]
  11. T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999). [CrossRef]
  12. S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004). [CrossRef]
  13. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010). [CrossRef]
  14. X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011). [CrossRef]
  15. Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011). [CrossRef]
  16. A. Quirce and A. Valle, Opt. Express 20, 13390 (2012). [CrossRef]
  17. J. P. Zhuang and S. C. Chan, Opt. Lett. 38, 344 (2013). [CrossRef]
  18. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013). [CrossRef]
  19. A. Kaszubowska, L. P. Barry, and P. Anandarajah, IEEE Photon. Technol. Lett. 14, 1599 (2002). [CrossRef]
  20. S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Express 15, 14921 (2007). [CrossRef]
  21. C. Cui, X. Fu, and S. C. Chan, Opt. Lett. 34, 3821 (2009). [CrossRef]
  22. Y. H. Hung, C. H. Chu, and S. K. Hwang, Opt. Lett. 38, 1482 (2013). [CrossRef]
  23. S. Donati and S. K. Hwang, Prog. Quantum Electron. 36, 293 (2012). [CrossRef]
  24. S. C. Chan, IEEE J. Quantum Electron. 46, 421 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited