OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 18 — Sep. 15, 2013
  • pp: 3485–3487

Quantum-confined photoluminescence from Ge1−xSnx/Ge superlattices on Ge-buffered Si(001) substrates

Guo-En Chang, Wen-Yao Hsieh, Jia-Zhi Chen, and Henry H. Cheng  »View Author Affiliations

Optics Letters, Vol. 38, Issue 18, pp. 3485-3487 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first observation of room-temperature quantum-confined photoluminescence (PL) from low-dimensional Ge1xSnx/Ge superlattices (SLs) up to a high Sn content of 6.96%. Both direct and indirect emissions associated with the interband transitions between minibands in the conduction bands and valence band were observed at room temperature. As the Sn content is increased, the energy difference between the lowest direct and indirect transitions is reduced, indicating an effective modification of the band structure desired for optoelectronics. The integrated PL intensity ratio of direct to indirect recombinations is significantly enhanced with increasing Sn content due to the reduced Γ-L energy separation and quantum confinement effect. Those results suggest that Sn-based low-dimensional structures are promising material for efficient Si-based lasers.

© 2013 Optical Society of America

OCIS Codes
(160.3380) Materials : Laser materials
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5230) Optoelectronics : Photoluminescence
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:

Original Manuscript: July 22, 2013
Manuscript Accepted: August 4, 2013
Published: September 4, 2013

Guo-En Chang, Wen-Yao Hsieh, Jia-Zhi Chen, and Henry H. Cheng, "Quantum-confined photoluminescence from Ge1−xSnx/Ge superlattices on Ge-buffered Si(001) substrates," Opt. Lett. 38, 3485-3487 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kouvetakis, J. Menendez, and A. V. G. Chizmeshya, Annu. Rev. Mater. Res. 36, 497 (2006). [CrossRef]
  2. G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010). [CrossRef]
  3. G. Sun, R. Soref, and H. Cheng, Opt. Express 18, 19957 (2010). [CrossRef]
  4. G. E. Chang, S. W. Chang, and S. L. Chuang, IEEE J. Quantum Electron. 46, 1813 (2010). [CrossRef]
  5. G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997). [CrossRef]
  6. R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, Appl. Phys. Lett. 99, 181125 (2011). [CrossRef]
  7. V. D’Costa, C. Cook, A. Birdwell, C. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, Phys. Rev. B 73, 125207 (2006). [CrossRef]
  8. G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menendez, Appl. Phys. Lett. 101, 072105 (2012). [CrossRef]
  9. B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, Appl. Phys. Lett. 99, 152103 (2011). [CrossRef]
  10. I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. I. Mashanov, A. I. Nikiforov, O. P. Pchelyakov, and X. S. Wu, AIP Advances 1, 042118 (2011). [CrossRef]
  11. E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, Thin Solid Films 520, 3195 (2012). [CrossRef]
  12. S. Su, W. Wang, B. Cheng, W. Hu, G. Zhang, C. Xue, Y. Zuo, and Q. Wang, Solid State Commun. 151, 647 (2011). [CrossRef]
  13. J. Mathews, R. T. Beeler, J. Tolle, C. Xu, R. Roucka, J. Kouvetakis, and J. Menendez, Appl. Phys. Lett. 97, 221912 (2010). [CrossRef]
  14. G. E. Chang, S. W. Chang, and S. L. Chuang, Opt. Express 17, 11246 (2009). [CrossRef]
  15. N. D. Zakharov, V. G. Talalaev, P. Werner, A. A. Tonkikh, and G. E. Cirlin, Appl. Phys. Lett. 83, 3084 (2003). [CrossRef]
  16. Y. Chen, C. Li, H. Lai, and S. Chen, Nanotechnology 21, 115207 (2010). [CrossRef]
  17. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J. Coudevylle, and L. Vivien, Appl. Phys. Lett. 99, 141106 (2011). [CrossRef]
  18. H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, Appl. Phys. Lett. 102, 182106 (2013). [CrossRef]
  19. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, Appl. Phys. Lett. 72, 3175 (1998). [CrossRef]
  20. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999). [CrossRef]
  21. H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, Appl. Phys. Lett. 102, 251907 (2013). [CrossRef]
  22. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).
  23. H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, Appl. Phys. Lett. 100, 102109 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited