OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 18 — Sep. 15, 2013
  • pp: 3514–3517

Macroscopic response in active nonlinear photonic crystals

Gandhi Alagappan, Sajeev John, and Er Ping Li  »View Author Affiliations


Optics Letters, Vol. 38, Issue 18, pp. 3514-3517 (2013)
http://dx.doi.org/10.1364/OL.38.003514


View Full Text Article

Enhanced HTML    Acrobat PDF (189 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: May 21, 2013
Revised Manuscript: July 6, 2013
Manuscript Accepted: August 12, 2013
Published: September 5, 2013

Citation
Gandhi Alagappan, Sajeev John, and Er Ping Li, "Macroscopic response in active nonlinear photonic crystals," Opt. Lett. 38, 3514-3517 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-18-3514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Hallerm, and J. Vučković, Nat. Photonics 5, 297 (2011). [CrossRef]
  2. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, Phys. Rev. Lett. 96, 127404 (2006). [CrossRef]
  3. P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, Phys. Rev. B 73, 165125 (2006). [CrossRef]
  4. S. L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. B. Abad, Opt. Express 19, 1539 (2011). [CrossRef]
  5. H. Takeda and S. John, Phys. Rev. A 83, 053811 (2011). [CrossRef]
  6. A. Kaso and S. John, Phys. Rev. E 74, 046611 (2006). [CrossRef]
  7. A. Kaso and S. John, Phys. Rev. A 76, 053838 (2007). [CrossRef]
  8. L. Florescu, K. Busch, and S. John, J. Opt. Soc. Am. B 19, 2215 (2002). [CrossRef]
  9. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 3.
  10. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass, 1977), Chap. 8.
  11. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 24, Sect. 4.
  12. In the semiclassical laser theory ∂A/∂t and the loss (σ) are both assumed one order smaller than ωA and are referred to as first-order terms (Refs. [10,11]). Their product, A/∂t, is a second-order term that can be neglected. A more systematic ordering and elimination of second-order terms can be accomplished by a multiscale expansion method as discussed in [8].
  13. C. M. de Sterke and J. E. Sipe, Phys. Rev. A 38, 5149 (1988). [CrossRef]
  14. C. M. Bowden and G. P. Agrawal, Opt. Commun. 100, 147 (1993). [CrossRef]
  15. Y. C. Lan, Appl. Phys. Lett. 88, 071109 (2006). [CrossRef]
  16. P. W. Milonni and J. H. Eberly, Laser Physics, 2nd ed. (Wiley, 2010).
  17. K. Sakoda, Phys. Rev. B 52, 7982 (1995). [CrossRef]
  18. J. F. Cornwell, Group Theory in Physics (Academic, 1997).
  19. S. John and R. Wang, Phys. Rev. A 78, 043809 (2008). [CrossRef]
  20. S. Eyderman, S. John, and A. Deinega, J. Appl. Phys. 113, 154315 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited