OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 18 — Sep. 15, 2013
  • pp: 3562–3565

Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan  »View Author Affiliations


Optics Letters, Vol. 38, Issue 18, pp. 3562-3565 (2013)
http://dx.doi.org/10.1364/OL.38.003562


View Full Text Article

Enhanced HTML    Acrobat PDF (1394 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the observation of optical bistability in an integrated planar microresonator with embedded silicon nanocrystals (Si-ncs). The phenomenon originates from the thermo-optical modulation of the silica-embedded Si-ncs refractive index, which in turn alters the spectral position of the resonator mode. The estimated thermo-optical coefficient of the Si nanocrystalline material, dn/dT2.92×105K1, is an order of magnitude lower than that of bulk silicon. Both time-resolved pump-and-probe experiments and numerical simulations confirm that the silica host is responsible for the heat dissipation from the resonator. Moreover, a negligible Q-factor degradation at pump powers as high as 100 mW, along with the absence of a fast component in time-resolved measurements, confirm the minute contribution from excited carriers effects. These observations, combined with the already published large third-order nonlinearities of Si-ncs (an order of magnitude larger than in bulk Si), make this system an outstanding candidate for low-power on-chip nonlinear comb generation.

© 2013 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.4320) Optical devices : Nonlinear optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

History
Original Manuscript: June 20, 2013
Revised Manuscript: August 17, 2013
Manuscript Accepted: August 17, 2013
Published: September 6, 2013

Citation
F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, "Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator," Opt. Lett. 38, 3562-3565 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-18-3562


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004). [CrossRef]
  2. Q. Xu and M. Lipson, Opt. Lett. 31, 341 (2006). [CrossRef]
  3. S. Malaguti, G. Bellanca, and S. Trillo, Opt. Express 21, 15859 (2013). [CrossRef]
  4. S. Malaguti, G. Bellanca, A. de Rossi, S. Combrié, and S. Trillo, Phys. Rev. A 83, 051802 (2011). [CrossRef]
  5. P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, Nat. Photonics 1, 172 (2007). [CrossRef]
  6. V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004). [CrossRef]
  7. P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005). [CrossRef]
  8. G. Faraci, S. Gibilisco, and A. R. Pennisi, Phys. Rev. B 80, 193410 (2009). [CrossRef]
  9. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, Opt. Express 13, 9623 (2005). [CrossRef]
  10. P. Sun and R. M. Reano, Opt. Lett. 35, 1124 (2010). [CrossRef]
  11. I. Carusotto and G. La Rocca, Phys. Rev. B 60, 4907 (1999). [CrossRef]
  12. M. Soljačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, Phys. Rev. E 66, 055601 (2002). [CrossRef]
  13. A. Armaroli, S. Malaguti, G. Bellanca, S. Trillo, A. de Rossi, and S. CombriŽ, Phys. Rev. A 84, 053816 (2011). [CrossRef]
  14. R. W. Ziolkowski and J. B. Judkins, J. Opt. Soc. Am. B 10, 186 (1993). [CrossRef]
  15. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007). [CrossRef]
  16. T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004). [CrossRef]
  17. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, Opt. Express 19, 14233 (2011). [CrossRef]
  18. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, Opt. Lett. 37, 875 (2012). [CrossRef]
  19. G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, J. Appl. Phys. 91, 4607 (2002). [CrossRef]
  20. R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Giordana, J. M. Fedeli, and L. Pavesi, Opt. Express 17, 3941 (2009). [CrossRef]
  21. J. Blasco, J. V. Galán, P. Sanchis, J. M. Martínez, A. Martínez, E. Jordana, J. M. Fedeli, and J. Martí, Opt. Commun. 283, 435 (2010). [CrossRef]
  22. A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, Nano Lett. 10, 1506 (2010). [CrossRef]
  23. A. Trita, C. Lacava, P. Minzioni, J.-P. Colonna, P. Gautier, J.-M. Fedeli, and I. Cristiani, Appl. Phys. Lett. 99, 191105 (2011). [CrossRef]
  24. S. Seo, J. Lee, J. H. Shin, E.-S. Kang, and B.-S. Bae, Appl. Phys. Lett. 85, 2526 (2004). [CrossRef]
  25. M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, Opt. Express 16, 13218 (2008). [CrossRef]
  26. A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, Phys. Rev. Lett. 104,103901 (2010). [CrossRef]
  27. T. Kippenberg, A. Tchebotareva, J. Kalkman, A. Polman, and K. Vahala, Phys. Rev. Lett. 103, 027406 (2009). [CrossRef]
  28. M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, IEEE Photon. Technol. Lett. 23, 1166 (2011). [CrossRef]
  29. A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, Appl. Phys. Lett. 98, 041102 (2011). [CrossRef]
  30. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003). [CrossRef]
  31. The fall time toff in electronics is defined as the time elapsed when a signal changes its magnitude between two values, which typically are taken to be 90%, and 10% of the signal step. In the case of a single exponential signal y=y0+Ae−t/τ, toff is about 2.2τ. N. S. Nise, Control Systems Engineering (Wiley, 2011).
  32. M. Borselli, T. J. Johnson, and O. Painter, Opt. Express 13, 1515 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited