OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 18 — Sep. 15, 2013
  • pp: 3623–3626

Generation of tightly compressed solitons with a tunable frequency shift in Raman-free fibers

Rodislav Driben and Boris A. Malomed  »View Author Affiliations

Optics Letters, Vol. 38, Issue 18, pp. 3623-3626 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optimization of the compression of input N-solitons into robust ultra-narrow fundamental solitons, with a tunable up- or downshifted frequency, is proposed in photonic crystal fibers free of the Raman effect. Due to the absence of the Raman self-frequency shift, these fundamental solitons continue propagation, maintaining the acquired frequency, once separated from the input N soliton’s temporal slot. A universal optimal value of the relative strength of the third-order dispersion is found, providing the strongest compression of the fundamental soliton is found. It depends only on the order of the injected N-soliton. The largest compression degree significantly exceeds the analytical prediction supplied by the Satsuma–Yajima formula. The mechanism behind this effect, which remains valid in the presence of the self-steepening, is explained.

© 2013 Optical Society of America

OCIS Codes
(060.2630) Fiber optics and optical communications : Frequency modulation
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Nonlinear Optics

Original Manuscript: July 9, 2013
Revised Manuscript: August 21, 2013
Manuscript Accepted: August 21, 2013
Published: September 10, 2013

Rodislav Driben and Boris A. Malomed, "Generation of tightly compressed solitons with a tunable frequency shift in Raman-free fibers," Opt. Lett. 38, 3623-3626 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763 (1989). [CrossRef]
  2. J. Satsuma and N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974). [CrossRef]
  3. R. H. Stolen, L. F. Mollenauer, and W. J. Tomlinson, Opt. Lett. 8, 186 (1983). [CrossRef]
  4. F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986). [CrossRef]
  5. J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006). [CrossRef]
  6. E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, JETP Lett. 42, 74 (1985).
  7. Y. Kodama and A. Hasegawa, IEEE Photon. Technol. Lett. QE-23, 510 (1987).
  8. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002). [CrossRef]
  9. W. Liu, L. Pang, X. Lin, R. Gao, and X. Song, Appl. Opt. 51, 8095 (2012). [CrossRef]
  10. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, Phys. Rev. A 87, 063808 (2013). [CrossRef]
  11. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003). [CrossRef]
  12. J. H. Lee, J. V. Howe, C. Xu, and X. Liu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008). [CrossRef]
  13. S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 934 (2007). [CrossRef]
  14. G. Yang, L. Li, S. Jia, and D. Mihalache, Rom. Rep. Phys. 65, 391 (2013).
  15. D. V. Skryabin and A. V. Gorbach, Rev. Mod. Phys. 82, 1287 (2010). [CrossRef]
  16. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, Phys. Rev. Lett. 95, 213902 (2005). [CrossRef]
  17. R. Driben, F. Mitschke, and N. Zhavoronkov, Opt. Express 18, 25993 (2010). [CrossRef]
  18. R. Driben and I. Babushkin, Opt. Lett. 37, 5157 (2012). [CrossRef]
  19. A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, Sci. Rep. 2, 850 (2012). [CrossRef]
  20. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, Opt. Express 21, 14481 (2013). [CrossRef]
  21. R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, Opt. Express 21, 19091 (2013). [CrossRef]
  22. A. Demircan, Sh. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, Appl. Phys. B, doi: 10.1007/s00340-013-5609-9 (2013). [CrossRef]
  23. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 28, A11 (2011). [CrossRef]
  24. B. A. Malomed, Phys. Rev. A 44, 1412 (1991). [CrossRef]
  25. R. Driben and B. A. Malomed, Opt. Commun. 197, 481 (2001). [CrossRef]
  26. M. H. Frosz, O. Bang, and A. Bjarklev, Opt. Express 14, 9391 (2006). [CrossRef]
  27. J. Yang and T. R. Akylas, Stud. Appl. Math. 111, 359 (2003). [CrossRef]
  28. L. C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, Y. S. Kivshar, and V. M. Pérez-García, Phys. Rev. E 67, 046610 (2003). [CrossRef]
  29. M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited