OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 19 — Oct. 1, 2013
  • pp: 3870–3873

PPLN-based OOK and DQPSK optical grooming by amplitude and phase-signal multiplexing through pump depletion

Sergio Pinna, Antonio Malacarne, Emma Lazzeri, and Antonella Bogoni  »View Author Affiliations

Optics Letters, Vol. 38, Issue 19, pp. 3870-3873 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (776 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and characterize a simple, integrable, and wavelength-preserving scheme able to groom a 40 Gbps (D)QPSK signal with a 20 Gbps OOK one into a 20 Gbaud (60 Gbps) 8-APSK signal. The proposed all-optical scheme is based on the second-order nonlinear signal-depletion effect in a single periodically poled lithium niobate (PPLN) waveguide. Performance of the device, characterized by means of BER measurements, attests error-free operation and a power penalty below 4.1 dB.

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.7085) Ultrafast optics : Ultrafast information processing

ToC Category:
Ultrafast Optics

Original Manuscript: May 23, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: August 22, 2013
Published: September 26, 2013

Sergio Pinna, Antonio Malacarne, Emma Lazzeri, and Antonella Bogoni, "PPLN-based OOK and DQPSK optical grooming by amplitude and phase-signal multiplexing through pump depletion," Opt. Lett. 38, 3870-3873 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G.-W. Lu and T. Miyazaki, IEEE Photon. Technol. Lett. 20, 1995 (2008). [CrossRef]
  2. N. Kikuchi, K. Mandai, K. Sekine, and S. Sasaki, J. Lightwave Technol. 26, 150 (2008). [CrossRef]
  3. K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, Electron. Lett. 41, 7 (2005). [CrossRef]
  4. M. Serbay, T. Tokle, P. Jeppesen, and W. Rosenkranz, Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2007), paper OThL2.
  5. B. Teipen and M. H. Eiselt, in ITG Symposium on Photonic Networks (IEEE, 2010), paper 22.
  6. S. Radic, Sel. Top. Quant. Electron. 18, 670 (2012). [CrossRef]
  7. S. Pinna, A. Malacarne, and A. Bogoni, Proceedings of the OptoElectronics and Communications Conference/Photonics in Switching (2013), paper Mo1-1.
  8. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), Chaps. 1–2.
  9. I. Cristiani, V. Degiorgio, L. Socci, F. Carbone, and M. Romagnoli, IEEE Photon. Technol. Lett. 14, 669 (2002). [CrossRef]
  10. A. Bogoni, X. Wu, S. R. Nuccio, and A. E. Willner, J. Lightwave Technol. 30, 1829 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited