OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 19 — Oct. 1, 2013
  • pp: 3922–3925

Faithful reconstruction of digital holograms captured by FINCH using a Hamming window function in the Fresnel propagation

Nisan Siegel, Joseph Rosen, and Gary Brooker  »View Author Affiliations

Optics Letters, Vol. 38, Issue 19, pp. 3922-3925 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (482 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent advances in Fresnel incoherent correlation holography (FINCH) increase the signal-to-noise ratio in hologram recording by interference of images from two diffractive lenses with focal lengths close to the image plane. Holograms requiring short reconstruction distances are created that reconstruct poorly with existing Fresnel propagation methods. Here we show a dramatic improvement in reconstructed fluorescent images when a 2D Hamming window function substituted for the disk window typically used to bound the impulse response in the Fresnel propagation. Greatly improved image contrast and quality are shown for simulated and experimentally determined FINCH holograms using a 2D Hamming window without significant loss in lateral or axial resolution.

© 2013 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.1970) Holography : Diffractive optics
(090.2880) Holography : Holographic interferometry
(100.6890) Image processing : Three-dimensional image processing
(110.0180) Imaging systems : Microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: July 22, 2013
Manuscript Accepted: August 26, 2013
Published: September 30, 2013

Nisan Siegel, Joseph Rosen, and Gary Brooker, "Faithful reconstruction of digital holograms captured by FINCH using a Hamming window function in the Fresnel propagation," Opt. Lett. 38, 3922-3925 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Rosen and G. Brooker, Opt. Lett. 32, 912 (2007). [CrossRef]
  2. J. Rosen and G. Brooker, Nat. Photonics 2, 190 (2008). [CrossRef]
  3. G. Brooker, N. Siegel, V. Wang, and J. Rosen, Opt. Express 19, 5047 (2011). [CrossRef]
  4. J. Rosen, N. Siegel, and G. Brooker, Opt. Express 19, 26249 (2011). [CrossRef]
  5. P. Bouchal, J. Kapitan, R. Chmelik, and Z. Bouchal, Opt. Express 19, 15603 (2011). [CrossRef]
  6. B. Katz, J. Rosen, R. Kelner, and G. Brooker, Opt. Express 20, 9109 (2012). [CrossRef]
  7. X. Lai, Y. Zhao, X. Lv, Z. Zhou, and S. Zeng, Opt. Lett. 37, 2445 (2012). [CrossRef]
  8. N. Siegel, J. Rosen, and G. Brooker, Opt. Express 20, 19822 (2012). [CrossRef]
  9. P. Bouchal and Z. Bouchal, J. Europ. Opt. Soc. 8, 13011 (2013). [CrossRef]
  10. R. W. Hamming, Digital Filters (Prentice-Hall, 1977), Sec. 5.8.
  11. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2005).
  12. J. O. Smith, Spectral Audio Signal Processing (W3K, 2011).
  13. F. J. Harris, Proc. IEEE 66, 51 (1978). [CrossRef]
  14. D. J. A. McKechan, C. Robinson, and B. S. Sathyaprakash, Class. Quantum Grav. 27, 084020 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1070 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited