OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 19 — Oct. 1, 2013
  • pp: 3949–3952

Lateral shifts and photon tunneling in a frustrated total internal reflection structure with a negative-zero-positive index metamaterial

Xinglin Wang, Ming Shen, An Jiang, and Fanong Zheng  »View Author Affiliations

Optics Letters, Vol. 38, Issue 19, pp. 3949-3952 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Motivated by the realization of the Dirac point (DP) with a double-cone structure for optical field in the negative-zero-positive index metamaterial (NZPIM), the lateral shift and tunneling time of photon tunneling through a frustrated total internal reflection structure containing a NZPIM barrier are investigated by employing Artman’s stationary phase method. Near the DP, the lateral shift can vary from positive to negative and the photon tunneling displays a superluminal dynamic. Because of the Hartman effect, both lateral shift and tunneling time tend to a saturation value when the barrier thickness increases. These results may lead to potential applications in integral optics and optical-based devices and also suggest analogous phenomena of valance electron in single-layered carbon graphene.

© 2013 Optical Society of America

OCIS Codes
(240.7040) Optics at surfaces : Tunneling
(260.2110) Physical optics : Electromagnetic optics
(260.6970) Physical optics : Total internal reflection

ToC Category:
Physical Optics

Original Manuscript: July 3, 2013
Manuscript Accepted: September 4, 2013
Published: September 30, 2013

Xinglin Wang, Ming Shen, An Jiang, and Fanong Zheng, "Lateral shifts and photon tunneling in a frustrated total internal reflection structure with a negative-zero-positive index metamaterial," Opt. Lett. 38, 3949-3952 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). [CrossRef]
  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). [CrossRef]
  3. C. W. Beenakker, Rev. Mod. Phys. 80, 1337 (2008). [CrossRef]
  4. F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904 (2008). [CrossRef]
  5. O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, Phys. Rev. Lett. 98, 103901 (2007). [CrossRef]
  6. X. Zhang, Phys. Rev. Lett. 100, 113903 (2008). [CrossRef]
  7. O. Bahat-Treidel, O. Peleg, M. Grobman, N. Shapira, M. Segev, and T. Pereg-Barnea, Phys. Rev. Lett. 104, 063901 (2010). [CrossRef]
  8. L.-G. Wang, Z.-G. Wang, J.-X. Zhang, and S.-Y. Zhu, Opt. Lett. 34, 1510 (2009). [CrossRef]
  9. L.-G. Wang, Z.-G. Wang, and S.-Y. Zhu, Europhys. Lett. 86, 47008 (2009). [CrossRef]
  10. X. Chen, L.-G. Wang, and C.-F. Li, Phys. Rev. A 80, 043839 (2009). [CrossRef]
  11. M. Shen, L. Ruan, and X. Chen, Opt. Express 18, 12779 (2010). [CrossRef]
  12. M. Shen, L. Ruan, X.-L. Wang, J.-L. Shi, and Q. Wang, Phys. Rev. A 83, 045804 (2011). [CrossRef]
  13. P. Balcou and L. Dutriaux, Phys. Rev. Lett. 78, 851 (1997). [CrossRef]
  14. X. Chen, X.-J. Lu, P.-L. Zhao, and Q.-B. Zhu, Opt. Lett. 37, 1526 (2012). [CrossRef]
  15. H. G. Winful and C. Zhang, Phys. Rev. A 79, 023826 (2009). [CrossRef]
  16. N.-H. Liu, S.-Y. Zhu, H. Chen, and X. Wu, Phys. Rev. E 65, 046607 (2002). [CrossRef]
  17. K. V. Artmann, Ann. Phys. 437, 87 (1948). [CrossRef]
  18. F. Goos and H. Hänchen, Ann. Phys. 436, 333 (1947). [CrossRef]
  19. T. E. Hartman, J. Appl. Phys. 33, 3427 (1962). [CrossRef]
  20. H. G. Winful, Opt. Express 10, 1491 (2002). [CrossRef]
  21. Y.-J. Xiang, X.-Y. Dai, and S.-C. Wen, J. Opt. A 9, 253 (2007). [CrossRef]
  22. C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydlo, Phys. Rev. Lett. 102, 146804 (2009). [CrossRef]
  23. X. Chen, J. Tao, and Y. Ban, Eur. Phys. J. B 79, 203 (2011). [CrossRef]
  24. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006). [CrossRef]
  25. F. Zhang, G. Houzet, E. Lheurette, D. Lippens, M. Chaubet, and X. Zhao, J. Appl. Phys. 103, 084312 (2008). [CrossRef]
  26. C.-F. Li, Q.-B. Zhu, G. Nimtz, X. Chen, and Y. Zhang, Opt. Commun. 259, 470 (2006). [CrossRef]
  27. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett. 71, 708 (1993). [CrossRef]
  28. H. Winful, Phys. Rev. Lett. 90, 023901 (2003). [CrossRef]
  29. L.-J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000). [CrossRef]
  30. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003). [CrossRef]
  31. Z. Li, H. Zhao, Y. Nie, and J. Liang, J. Appl. Phys. 113, 043714 (2013). [CrossRef]
  32. L.-G. Wang, J.-P. Xu, and S.-Y. Zhu, Phys. Rev. E 70, 066624 (2004). [CrossRef]
  33. N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009). [CrossRef]
  34. A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited