OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 19 — Oct. 1, 2013
  • pp: 3957–3960

Resolving spatial modes of lasers via matrix completion

Yuejie Chi and Betty Lise Anderson  »View Author Affiliations

Optics Letters, Vol. 38, Issue 19, pp. 3957-3960 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explain a technique that recovers the structure and the modal weights of spatial modes of lasers from a limited number of spatial coherence measurements. Our approach interpolates the unobserved spatial coherence measurements via the low-rank matrix completion algorithm based on nuclear norm minimization and then extracts the set of modes via singular value decomposition. Numerical examples are provided on a variety of lasers to demonstrate the effectiveness of the method, and it is shown that the proposed method can further reduce the number of measurements by a factor of 2 for a moderate data size.

© 2013 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Coherence and Statistical Optics

Original Manuscript: July 10, 2013
Revised Manuscript: August 26, 2013
Manuscript Accepted: September 3, 2013
Published: September 30, 2013

Yuejie Chi and Betty Lise Anderson, "Resolving spatial modes of lasers via matrix completion," Opt. Lett. 38, 3957-3960 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R.-J. Essiambre, R. Ryf, N. K. Fontaine, and S. Randel, IEEE Photon. J. 5, 0701307 (2013). [CrossRef]
  2. F. Gori, M. Satarsiero, R. Borghi, and G. Guattari, Opt. Lett. 23, 989 (1998). [CrossRef]
  3. A. Cutolo, T. Isernia, I. Izzo, R. Pierri, and L. Zeni, Appl. Opt. 34, 7974 (1995). [CrossRef]
  4. R. Borghi, G. Guattari, L. de la Torre, F. Gori, and M. Santasiero, J. Opt. Soc. Am. A 20, 1763 (2003). [CrossRef]
  5. R. Borghi and M. Santasiero, Opt. Lett. 23, 313 (1998). [CrossRef]
  6. P. Spano, Opt. Commun. 33, 265 (1980). [CrossRef]
  7. E. Tervonen, J. Turunen, and A. T. Friberg, Appl. Phys. B 49, 409 (1989). [CrossRef]
  8. L. J. Pelz and B. L. Anderson, Opt. Eng. 34, 3323 (1995). [CrossRef]
  9. Y. Meja and A. I. Gonzlez, Opt. Commun. 273, 428 (2007). [CrossRef]
  10. B. L. Anderson and P. L. Fuhr, Opt. Eng. 32, 926 (1993). [CrossRef]
  11. C. Iaconis and I. A. Walmsley, Opt. Lett. 21, 1783 (1996). [CrossRef]
  12. D. Mendlovic, G. Shabtay, A. W. Lohmann, and N. Konforti, Opt. Lett. 23, 1084 (1998). [CrossRef]
  13. P. Spano, J.-M. Dumant, and Y. Guillausseau, Ann. Télécommun. 35, 231 (1980).
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), p. 215.
  15. L. J. Pelz and B. L. Anderson, Proceedings of IEEE Lasers and Electro-Optics Society 6th Annual Meeting (IEEE, 1993), pp. 163–164.
  16. C. M. Warnky, B. L. Anderson, and C. A. Klein, Appl. Opt. 39, 6109 (2000). [CrossRef]
  17. E. J. Candès and B. Recht, Found. Comput. Math. 9, 717 (2009).
  18. E. J. Candès and T. Tao, IEEE Trans. Inf. Theory 56, 2053 (2010). [CrossRef]
  19. M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined convex programming,” 2008, http://cvxr.com/cvx/ .
  20. L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, Opt. Express 20, 8296 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited