OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 2 — Jan. 15, 2013
  • pp: 136–138

Microwave spectrum sensing based on photonic time stretch and compressive sampling

Hao Chi, Ying Chen, Yuan Mei, Xiaofeng Jin, Shilie Zheng, and Xianmin Zhang  »View Author Affiliations

Optics Letters, Vol. 38, Issue 2, pp. 136-138 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach to realizing microwave spectrum sensing based on photonic time stretch and compressive sampling is proposed. The time stretch system is used to slow down the input high-speed signal and the compressive sampling based on random demodulation can further decrease the sampling rate. A spectrally sparse signal in a wide bandwidth can be captured with a sampling rate far lower than the Nyquist rate thanks to both time stretch and compressive sampling. It is demonstrated that a system with a time stretch factor 5 and a compression factor 8 can be used to capture a signal with multiple tones in a 50 GHz bandwidth, which means a sampling rate 40 times lower than the Nyquist rate. In addition, the time stretch of the microwave signal largely decreases the data rate of random data sequence and therefore the speed of the mixer in the random demodulator.

© 2013 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(250.4745) Optoelectronics : Optical processing devices

ToC Category:

Original Manuscript: November 12, 2012
Revised Manuscript: December 4, 2012
Manuscript Accepted: December 12, 2012
Published: January 8, 2013

Hao Chi, Ying Chen, Yuan Mei, Xiaofeng Jin, Shilie Zheng, and Xianmin Zhang, "Microwave spectrum sensing based on photonic time stretch and compressive sampling," Opt. Lett. 38, 136-138 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. T. Nguyen and D. B. Hunter, IEEE Photonics Technol. Lett. 18, 1188 (2006). [CrossRef]
  2. H. Chi, X. H. Zou, and J. P. Yao, IEEE Photonics Technol. Lett. 20, 1249 (2008). [CrossRef]
  3. R. E. Saperstein, D. Panasenko, and Y. Fainman, Opt. Lett. 29, 501 (2004). [CrossRef]
  4. B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microwave Theor. Tech. 58, 3103 (2010). [CrossRef]
  5. Y. Wang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Lett. 36, 3897 (2011). [CrossRef]
  6. L. V. T. Nguyen, IEEE Photon. Technol. Lett. 21, 642 (2009). [CrossRef]
  7. S. T. Winnall and A. C. Lindsay, IEEE Trans. Microwave Theor. Tech. 47, 1385 (1999). [CrossRef]
  8. W. S. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theor. Tech. 49, 1996 (2001). [CrossRef]
  9. J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, IEEE Trans. Inf. Theory 56, 520 (2010). [CrossRef]
  10. M. Mishali and Y. C. Eldar, IEEE J. Sel. Top. Signal Process. 4, 375 (2010). [CrossRef]
  11. H. Nan, Y. Gu, and H. Zhang, IEEE Photonics Technol. Lett. 23, 67 (2011). [CrossRef]
  12. J. M. Nicholes and F. Bucholz, Opt. Express 19, 7339 (2011). [CrossRef]
  13. H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, Opt. Lett. 37, 4636 (2012). [CrossRef]
  14. G. C. Valley, G. A. Sefler, and T. J. Shaw, Opt. Lett. 37, 4675 (2012).
  15. F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theor. Tech. 47, 1309 (1999). [CrossRef]
  16. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, IEEE J. Select Topics Signal Process. 4, 586 (2007). [CrossRef]
  17. G. A. Sefler, J. Chou, J. A. Conway, and G. C. Valley, J. Lightwave Technol. 28, 1468 (2010). [CrossRef]
  18. Y. Han, B. Jalali, J. Han, B. Seo, and H. Fetterman, IEICE Trans. Electron. E86-C, 1276 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited