OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 2 — Jan. 15, 2013
  • pp: 184–186

Far-field self-focusing and -defocusing radiation behaviors of the electroluminescent light sources due to negative refraction

Yu-Feng Yin, Yen-Chen Lin, Tsung-Han Tsai, Yi-Chun Shen, and JianJang Huang  »View Author Affiliations

Optics Letters, Vol. 38, Issue 2, pp. 184-186 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (397 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years, researchers have demonstrated negative refraction theoretically and experimentally by pumping optical power into photonic crystal (PhC) or waveguide structures. The concept of negative refraction can be used to create a perfect lens that focuses an object smaller than the wavelength. By inserting two-dimensional PhCs into the peripheral of a semiconductor light emitting structure, this study presents an electroluminescent device with negative refraction in the visible wavelength range. This approach produces polarization dependent collimation behavior in far-field radiation patterns. The modal dispersion of negative refraction results in strong group velocity modulation, and self-focusing and -defocusing behaviors are apparent from light extraction. This study further verifies experimental results by using theoretic calculations based on equifrequency contours.

© 2013 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optical Devices

Original Manuscript: November 12, 2012
Manuscript Accepted: December 7, 2012
Published: January 10, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Yu-Feng Yin, Yen-Chen Lin, Tsung-Han Tsai, Yi-Chun Shen, and JianJang Huang, "Far-field self-focusing and -defocusing radiation behaviors of the electroluminescent light sources due to negative refraction," Opt. Lett. 38, 184-186 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Notomi, Phys. Rev. B 62, 10696 (2000). [CrossRef]
  2. A. Martínez and J. Martí, Phys. Rev. B 71, 235115 (2005). [CrossRef]
  3. M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, Opt. Commun. 283, 1169 (2010). [CrossRef]
  4. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton, 2008).
  5. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010). [CrossRef]
  6. S. P. Burgos, R. De Waele, A. Polman, and H. A. Atwater, Nat. Mater. 9, 407 (2010). [CrossRef]
  7. S. C. Wang, Y. W. Cheng, Y. F. Yin, L. Y. Chen, L. Y. Su, Y. J. Hung, and J. J. Huang, J Lightwave Technol. 29, 3772 (2011). [CrossRef]
  8. K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. DenBaars, J. S. Speck, C. Weisbuch, and E. L. Hu, Appl. Phys. Lett. 93, 103502 (2008). [CrossRef]
  9. C. F. Lai, H. C. Kuo, P. Yu, T. C. Lu, C. H. Chao, H. H. Yen, and W. Y. Yeh, Appl. Phys. Lett. 97, 013108 (2010). [CrossRef]
  10. J. J. Wierer, A. David, and M. M. Megens, Nat. Photonics 3, 163 (2009). [CrossRef]
  11. K. Busch, G. Von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007). [CrossRef]
  12. D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, J Phys. D 40, 2635 (2007). [CrossRef]
  13. C. Luo, S. G. Johnson, J. Joannopoulos, and J. Pendry, Phys. Rev. B 65, 201104 (2002). [CrossRef]
  14. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, IEEE Photon. J 3, 489 (2011). [CrossRef]
  15. Y. W. Cheng, S. C. Wang, Y. F. Yin, L. Y. Su, and J. J. Huang, Opt. Lett. 36, 1611 (2011). [CrossRef]
  16. Y. T. Wang, Y. Chou, L. Y. Chen, Y. F. Yin, Y. C. Lin, and J. J. Huang, IEEE J Quantum Electron. 49, 11 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited