OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 20 — Oct. 15, 2013
  • pp: 4002–4004

Uniformly spaced λ/4-shifted Bragg grating array with wafer-scale CMOS-compatible process

Jie Sun, Purnawirman, Ehsan Shah Hosseini, Jonathan D. B. Bradley, Thomas N. Adam, Gerald Leake, Douglas Coolbaugh, and Michael R. Watts  »View Author Affiliations

Optics Letters, Vol. 38, Issue 20, pp. 4002-4004 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on an integrated λ/4-shifted Bragg grating array using a wafer-scale complementary metal-oxide semiconductor (CMOS) compatible process with silicon–nitride waveguides. A sidewall grating was used to simplify the fabrication process, and a sampled Bragg grating with equivalent phase-shift structure was employed to achieve an accurate λ/4 phase shift. A four-channel λ/4-shifted Bragg grating array with highly uniform channel spacing was demonstrated with a measured channel spacing variation below 10 pm (1.25 GHz). The high channel-spacing uniformity and the CMOS-compatibility of the demonstrated device hold promise for integrated distributed feedback laser arrays for various silicon photonic applications.

© 2013 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(050.5080) Diffraction and gratings : Phase shift
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Diffraction and Gratings

Original Manuscript: August 28, 2013
Manuscript Accepted: September 6, 2013
Published: October 3, 2013

Jie Sun, Purnawirman, Ehsan Shah Hosseini, Jonathan D. B. Bradley, Thomas N. Adam, Gerald Leake, Douglas Coolbaugh, and Michael R. Watts, "Uniformly spaced λ/4-shifted Bragg grating array with wafer-scale CMOS-compatible process," Opt. Lett. 38, 4002-4004 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013). [CrossRef]
  2. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, Opt. Lett. 35, 2394 (2010). [CrossRef]
  3. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Opt. Express 14, 9203 (2006). [CrossRef]
  4. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Hosseini, and M. R. Watts, Opt. Lett. 38, 1760 (2013). [CrossRef]
  5. K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, IEEE J. Quantum Electron. 22, 1042 (1986). [CrossRef]
  6. A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, Opt. Express 16, 4413 (2008). [CrossRef]
  7. Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, IEEE Photon. Technol. Lett. 16, 2284 (2004). [CrossRef]
  8. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, IEEE Photon. Technol. Lett. 18, 2493 (2006). [CrossRef]
  9. Y. Shi, X. Chen, Y. Zhou, S. Li, L. Lu, R. Liu, and Y. Feng, Opt. Lett. 37, 3315 (2012). [CrossRef]
  10. J. Sun, C. W. Holzwarth, and H. I. Smith, IEEE Photon. Technol. Lett. 24, 25 (2012). [CrossRef]
  11. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993). [CrossRef]
  12. M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, Opt. Express 21, 1181 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited