OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 20 — Oct. 15, 2013
  • pp: 4030–4032

Hot-wire polysilicon waveguides with low deposition temperature

Taha M. Ben Masaud, Antulio Tarazona, Ehsan Jaberansary, Xia Chen, Graham T. Reed, Goran Z. Mashanovich, and H. M. H. Chong  »View Author Affiliations

Optics Letters, Vol. 38, Issue 20, pp. 4030-4032 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We fabricated and measured the optical loss of polysilicon waveguides deposited using hot-wire chemical vapor deposition at a temperature of 240°C. A polysilicon film 220 nm thick was deposited on top of a 2000 nm thick plasma-enhanced chemical vapor deposition silicon dioxide layer. The crystalline volume fraction of the polysilicon film was measured by Raman spectroscopy to be 91%. The optical propagation losses of 400, 500, and 600 nm waveguides were measured to be 16.9, 15.9, and 13.5dB/cm, respectively, for transverse electric mode at the wavelength of 1550 nm. Scattering loss is expected to be the major contributor to the propagation loss.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials

ToC Category:
Integrated Optics

Original Manuscript: June 3, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 30, 2013
Published: October 4, 2013

Taha M. Ben Masaud, Antulio Tarazona, Ehsan Jaberansary, Xia Chen, Graham T. Reed, Goran Z. Mashanovich, and H. M. H. Chong, "Hot-wire polysilicon waveguides with low deposition temperature," Opt. Lett. 38, 4030-4032 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. B. Yoo, Electron. Lett. 45, 584 (2009). [CrossRef]
  2. B. Jalali, S. Fathpour, M. Paniccia, and G. T. Reed, J. Lightwave Technol. 24, 4600 (2006). [CrossRef]
  3. K. Preston, B. Schmidt, and M. Lipson, Opt. Express 15, 17283 (2007). [CrossRef]
  4. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, ACM J. Emerg. Technol. 7, 1 (2011).
  5. J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, Appl. Phys. Lett. 68, 2052 (1996). [CrossRef]
  6. L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, J. Electron. Mater. 29, 1380 (2000). [CrossRef]
  7. J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. J. Ram, Opt. Express 20, 7243 (2012). [CrossRef]
  8. S. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, Opt. Express 17, 20891 (2009). [CrossRef]
  9. K. Preston, P. Dong, B. Schmidt, and M. Lipson, Appl. Phys. Lett. 92, 151104 (2008). [CrossRef]
  10. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, Opt. Express 16, 6425 (2008). [CrossRef]
  11. R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, Appl. Phys. Express 5, 082501 (2012). [CrossRef]
  12. R. E. I. Schropp, Thin Solid Films 451–452, 455 (2004). [CrossRef]
  13. K.-Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, J. Non-Cryst. Solids 354, 2505 (2008). [CrossRef]
  14. E. Jaberansary, T. M. B. Masaud, M. Nedeljkovic, M. Milosevic, G. Z. Mashanovich, and H. M. H. Chong, IEEE Photon. J. 5, 6601010 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited