OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 20 — Oct. 15, 2013
  • pp: 4186–4188

Digital signal processing based on inverse scattering transform

Elena G. Turitsyna and Sergei K. Turitsyn  »View Author Affiliations

Optics Letters, Vol. 38, Issue 20, pp. 4186-4188 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (819 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal.

© 2013 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 4, 2013
Revised Manuscript: August 30, 2013
Manuscript Accepted: September 16, 2013
Published: October 11, 2013

Elena G. Turitsyna and Sergei K. Turitsyn, "Digital signal processing based on inverse scattering transform," Opt. Lett. 38, 4186-4188 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Winzer and R.-J. Essiambre, Proc. IEEE 94, 952 (2006). [CrossRef]
  2. S. J. Savory, Opt. Express 16, 804 (2008). [CrossRef]
  3. K. Kikuchi, IEICE Electron. Exp. 8, 1642 (2011). [CrossRef]
  4. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, IEEE J. Sel. Top. Quantum Electron. 16, 1217 (2010). [CrossRef]
  5. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
  6. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford University, 1995).
  7. S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons (Consultants Bureau, 1984).
  8. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, 1981).
  9. A. Hasegawa and T. Nyu, J. Lightwave Technol. 11, 395 (1993). [CrossRef]
  10. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, 1998).
  11. J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, Phys. Rev. Lett. 96, 023902 (2006). [CrossRef]
  12. T. J. Ellingham, J. D. Ania-Castanon, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, IEEE Photon. Technol. Lett. 18, 268 (2006).
  13. J. D. Ania-Castanon, V. Karalekas, P. Harper, and S. K. Turitsyn, Phys. Rev. Lett. 101, 123903 (2008). [CrossRef]
  14. J. Skaar and O. H. Waagaard, IEEE J. Quantum Electron. 39, 1238 (2003). [CrossRef]
  15. E. M. Ip and J. M. Kahn, J. Lightwave Technol. 28, 502 (2010). [CrossRef]
  16. L. B. Du and A. J. Lowery, Opt. Express 18, 17075 (2010). [CrossRef]
  17. D. Rafique, M. Mussolin, M. Forzati, J. Mrtensson, M. N. Chugtai, and A. D. Ellis, Opt. Express 19, 9453 (2011). [CrossRef]
  18. L. Zhu and G. Li, Opt. Express 20, 14362 (2012). [CrossRef]
  19. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, J. Lightwave Technol. 21, 61 (2003). [CrossRef]
  20. A. O. Korotkevich and P. M. Lushnikov, Opt. Lett. 36, 1851 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited