OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 20 — Oct. 15, 2013
  • pp: 4220–4223

Compact and low-loss silicon power splitter based on inverse tapers

Xianyao Li, Hao Xu, Xi Xiao, Zhiyong Li, Jinzhong Yu, and Yude Yu  »View Author Affiliations

Optics Letters, Vol. 38, Issue 20, pp. 4220-4223 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (610 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact, low-loss, optical power splitter based on inverse tapers is proposed and fabricated on a silicon-on-insulator platform. High efficiency mode evolution between the fundamental mode of the input waveguide and the super mode of the output waveguides is realized using optimized tapers. A 1×4 splitter with insertion loss lower than 0.4 dB and uniformity better than 0.68 dB in a wavelength range from 1510 to 1550 nm are demonstrated within a footprint of only 75μm2. These properties are very promising for ultrahigh density photonic integration applications.

© 2013 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: August 13, 2013
Revised Manuscript: September 16, 2013
Manuscript Accepted: September 17, 2013
Published: October 14, 2013

Xianyao Li, Hao Xu, Xi Xiao, Zhiyong Li, Jinzhong Yu, and Yude Yu, "Compact and low-loss silicon power splitter based on inverse tapers," Opt. Lett. 38, 4220-4223 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Tomofuji, S. Matsuo, T. Kakitsuka, and K. Kitayama, Opt. Express 17, 23380 (2009). [CrossRef]
  2. D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, Appl. Phys. Lett. 99, 051104 (2011). [CrossRef]
  3. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, Opt. Express 19, 21595 (2011). [CrossRef]
  4. Y. H. Ding, H. Y. Ou, J. Xu, and C. Peucheret, IEEE Photon. Technol. Lett. 25, 648 (2013). [CrossRef]
  5. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, Opt. Express 21, 1310 (2013). [CrossRef]
  6. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, Opt. Express 16, 21456 (2008). [CrossRef]
  7. Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, IEEE Photon. J. 4, 2272 (2012). [CrossRef]
  8. A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 17, 510 (2011). [CrossRef]
  9. H. Kurt, I. H. Giden, and D. S. Citrin, Opt. Express 19, 26827 (2011). [CrossRef]
  10. M. Zhang, R. Malureanu, A. C. Kruger, and M. Kristensen, Opt. Express 18, 14944 (2010). [CrossRef]
  11. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, IEEE Photon. Technol. Lett. 17, 585 (2005). [CrossRef]
  12. D. Dai and S. He, IEEE Photon. Technol. Lett. 21, 1630 (2009). [CrossRef]
  13. D. T. Spencer, D. Dai, Y. B. Tang, M. J. R. Heck, and J. E. Bowers, IEEE Photon. Technol. Lett. 25, 36 (2013). [CrossRef]
  14. C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013). [CrossRef]
  15. Z. T. Wang, Z. C. Fan, J. S. Xia, S. W. Chen, and J. Z. Yu, Jpn. J. Appl. Phys. 43, 5085 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited