OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 21 — Nov. 1, 2013
  • pp: 4393–4396

Multifocus tomographic algorithm for measuring optically thick specimens

Andrew D. Yablon  »View Author Affiliations

Optics Letters, Vol. 38, Issue 21, pp. 4393-4396 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (695 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel tomographic algorithm for reconstructing the two-dimensional refractive index fluctuations of an optically thick phase object from one-dimensional projections acquired at a multiplicity of focal positions and a multiplicity of angular orientations is described. The new method is validated by measurements of multicore and microstructured optical fibers using interference microscopy. The method will benefit other transverse fiber measurement technologies and is broadly applicable to any tomographic reconstruction problem in which the transverse dimension of the specimen is substantially larger than the depth-of-field of the imaging system.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2300) Fiber optics and optical communications : Fiber measurements
(110.6960) Imaging systems : Tomography

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 2, 2013
Revised Manuscript: September 18, 2013
Manuscript Accepted: September 24, 2013
Published: October 24, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Andrew D. Yablon, "Multifocus tomographic algorithm for measuring optically thick specimens," Opt. Lett. 38, 4393-4396 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).
  2. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, Opt. Commun. 175, 329 (2000). [CrossRef]
  3. B. L. Bachim and T. K. Gaylord, Appl. Opt. 44, 316 (2005). [CrossRef]
  4. B. L. Bachim, T. K. Gaylord, and S. C. Mettler, Opt. Lett. 30, 1126 (2005). [CrossRef]
  5. W. Gorski and W. Osten, Opt. Lett. 32, 1977 (2007). [CrossRef]
  6. N. M. Dragomir, X. M. Goh, and A. Roberts, Microsc. Res. Tech. 71, 5 (2008). [CrossRef]
  7. P. Kniazewski, T. Kozacki, and M. Kujawinska, Opt. Lasers Eng. 47, 259 (2009). [CrossRef]
  8. A. D. Yablon, Opt. Eng. 50, 111603 (2011). [CrossRef]
  9. M. Jenkins and T. K. Gaylord, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTh3C.2.
  10. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, Opt. Express 19, 16665 (2011). [CrossRef]
  11. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, Opt. Express 19, 16576 (2011). [CrossRef]
  12. A. D. Yablon, IEEE J. Lightwave Technol. 28, 360 (2010).
  13. S. W. Smith, The Scientists and Engineer’s Guide to Digital Signal Processing (California Technical Publishing, 1997).
  14. G. N. Ramachandran and A. V. Lakshminarayanan, Proc. Natl. Acad. Sci. USA 68, 2236 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited