OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 21 — Nov. 1, 2013
  • pp: 4405–4408

Gain saturation in a Raman-assisted fiber optical parametric amplifier

Xiaojie Guo, Xuelei Fu, and Chester Shu  »View Author Affiliations

Optics Letters, Vol. 38, Issue 21, pp. 4405-4408 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the gain saturation characteristics in a backward-pumped Raman-assisted fiber optical parametric amplifier (FOPA). It is experimentally observed that the onset of saturation occurs at a higher input power as compared to the case of a conventional FOPA with the same unsaturated gain. The output power under strong saturation is also enhanced. Simulations are performed on the power profile of the parametric pump to explain the distinct saturation behaviors. The monotonic increase of the parametric pump power in the Raman-assisted FOPA results in highly efficient power transfer to the signal while it suppresses the signal conversion to high-order idlers in the saturation regime.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 28, 2013
Manuscript Accepted: September 13, 2013
Published: October 25, 2013

Xiaojie Guo, Xuelei Fu, and Chester Shu, "Gain saturation in a Raman-assisted fiber optical parametric amplifier," Opt. Lett. 38, 4405-4408 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Torounidis and P. Andrekson, IEEE Photon. Technol. Lett. 19, 650 (2007). [CrossRef]
  2. M. N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002). [CrossRef]
  3. J. F. L. Freitas, M. B. Costa e Silva, S. R. Lüthi, and A. S. L. Gomes, Opt. Commun. 255, 314 (2005). [CrossRef]
  4. S. Peiris, N. Madamopoulos, N. Antoniades, M. Ummy, M. Ali, and R. Dorsinville, Appl. Opt. 51, 7834 (2012). [CrossRef]
  5. H. K. Y. Cheung, K. K. Y. Wong, N. Wong, and M. E. Marhic, Proc. SPIE 6103, 61030S1 (2006). [CrossRef]
  6. S. H. Wang, L. Xu, and P. K. A. Wai, in Proceedings of the IEEE Conference on Opto-Electronics and Communications (IEEE, 2009).
  7. S. H. Wang, L. Xu, P. K. A. Wai, and H. Y. Tam, J. Lightwave Technol. 29, 1172 (2011). [CrossRef]
  8. F. Da Ros, R. Borkowski, D. Zibar, and C. Peucheret, in European Conference and Exhibition on Optical Communication, OSA Technical Digest Series (Optical Society of America, 2012), paper We.2.A.3.
  9. Z. Lali-Dastjerdi, F. Da Ros, K. Rottwitt, M. Galili, and C. Peucheret, in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012).
  10. M. Matsumoto and T. Kamio, IEEE J. Sel. Top. Quantum Electron. 14, 610 (2008). [CrossRef]
  11. M. Gao, J. Kurumida, and S. Namiki, Opt. Lett. 35, 3468 (2010). [CrossRef]
  12. K. Inoue and T. Mukai, Opt. Lett. 26, 10 (2001). [CrossRef]
  13. J. Bromage, J. Lightwave Technol. 22, 79 (2004). [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  15. K. Inoue, IEEE Photon. Technol. Lett. 13, 338 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited