OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 21 — Nov. 1, 2013
  • pp: 4421–4424

Highly nonparaxial spin Hall effect and its enhancement by plasmonic structures

G. S. Agarwal and S.-A. Biehs  »View Author Affiliations

Optics Letters, Vol. 38, Issue 21, pp. 4421-4424 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new way to obtain large spin Hall effect of light (SHEL) in nonparaxial situations. We use near field of dipoles which contain all plane waves, both homogeneous and evanescent. We base SHEL on dipole–dipole interaction initiated energy transfer (FRET), which we further enhance using plasmonic platforms. The spin–orbit coupling inherent in Maxwell equations is seen in the conversion of a σ+ photon to a σ photon. The FRET is mediated by the resonant surface plasmons (SPs), and hence we find very large SHEL. We present explicit results for SHEL on metal films. We also study how the splitting of the SP on a metal film affects the SHEL.

© 2013 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(260.2160) Physical optics : Energy transfer
(260.7490) Physical optics : Zeeman effect

ToC Category:
Physical Optics

Original Manuscript: September 3, 2013
Manuscript Accepted: September 15, 2013
Published: October 29, 2013

G. S. Agarwal and S.-A. Biehs, "Highly nonparaxial spin Hall effect and its enhancement by plasmonic structures," Opt. Lett. 38, 4421-4424 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C.-F. Li, Phys. Rev. A 80, 063814 (2009). [CrossRef]
  2. K. Y. Bliokh and F. Nori, Phys. Rev. A 85, 061801 (2012). [CrossRef]
  3. O. Hosten and P. Kwiat, Science 319, 787 (2008). [CrossRef]
  4. D. Haefner, S. Sukhov, and A. Dogariu, Phys. Rev. Lett. 102, 123903 (2009). [CrossRef]
  5. C. Bonnet, D. Chauvat, O. Emile, F. Bretenaker, A. Le Floch, and L. Dutriaux, Opt. Lett. 26, 666 (2001). [CrossRef]
  6. N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, Opt. Lett. 36, 3200 (2011). [CrossRef]
  7. F. I. Fedorov, Dokl. Akad. Nauk. SSR 105, 465 (1955).
  8. C. Imbert, Phys. Rev. D 5, 787 (1972). [CrossRef]
  9. M. V. Berry, Proc. R. Soc. A 467, 2500 (2011). [CrossRef]
  10. C. Schwartz and A. Dogariu, Opt. Express 14, 8425 (2006). [CrossRef]
  11. H. F. Arnoldus, X. Li, and J. Shu, Opt. Lett 33, 1446 (2008). [CrossRef]
  12. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, Nat. Photonics 6, 459 (2012). [CrossRef]
  13. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, Nat. Photonics 3, 514 (2009). [CrossRef]
  14. Y. Gu, L. Wang, P. Ren, J. Zhang, T. Zhang, O. J. F. Martin, and Q. Gong, Nano Lett. 12, 2488 (2012). [CrossRef]
  15. C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, Phys. Rev. Lett. 109, 203601 (2012). [CrossRef]
  16. F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, Phys. Rev. A 72, 032509 (2005). [CrossRef]
  17. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012). [CrossRef]
  18. G. S. Agarwal, Quantum Optics (Cambridge University, 2012), p. 356.
  19. L. Novotny and B. Hecht, Nano-Optics (Cambridge University, 2012).
  20. f(κ,ω,z)=2πiκk0γ0[(1+rse2iγ0z)∓(γ02/k02)(1−rpe2iγ0z)]; the upper sign is for Dsh and the lower sign is for Dn.
  21. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  22. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, Nano Lett. 13, 497 (2013). [CrossRef]
  23. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981). [CrossRef]
  24. L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited