OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 21 — Nov. 1, 2013
  • pp: 4429–4432

Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography

Peng Xiao, Qingyun Li, Yongjoon Joo, Jutaek Nam, Sekyu Hwang, Jaejung Song, Sungjee Kim, Chulmin Joo, and Ki Hean Kim  »View Author Affiliations


Optics Letters, Vol. 38, Issue 21, pp. 4429-4432 (2013)
http://dx.doi.org/10.1364/OL.38.004429


View Full Text Article

Enhanced HTML    Acrobat PDF (340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the feasibility of a novel contrast agent, namely “smart” gold nanoparticles (AuNPs), in the detection of cancer cells with photothermal optical coherence tomography (PT-OCT). “Smart” AuNPs form aggregation in low pH condition, which is typical for cancer cells, and this aggregation results in a shift of their absorption spectrum. A PT-OCT system was developed to detect this pH-induced aggregation by combining an OCT light source and a laser with 660 nm in wavelength for photothermal excitation. Optical detection of pH-induced aggregation was tested with solution samples at two different pH conditions. An increase in optical path length (OPL) variation was measured at mild acidic condition, while there was not much change at neutral condition. Detection of cancer cells was tested with cultured cell samples. HeLa and fibroblast cells, as cancer and normal cells respectively, were incubated with “smart” gold nanoparticles and measured with PT-OCT. An elevated OPL variation signal was detected with the HeLa cells while not much of a signal was detected with the fibroblast cells. With the novel optical property of “smart” AuNPs and high sensitivity of PT-OCT, this technique is promising for cancer cell detection.

© 2013 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(350.5340) Other areas of optics : Photothermal effects
(160.4236) Materials : Nanomaterials

ToC Category:
Imaging Systems

History
Original Manuscript: August 2, 2013
Revised Manuscript: September 18, 2013
Manuscript Accepted: October 1, 2013
Published: October 30, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Peng Xiao, Qingyun Li, Yongjoon Joo, Jutaek Nam, Sekyu Hwang, Jaejung Song, Sungjee Kim, Chulmin Joo, and Ki Hean Kim, "Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography," Opt. Lett. 38, 4429-4432 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-21-4429

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited