OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 21 — Nov. 1, 2013
  • pp: 4445–4448

Standoff trace chemical sensing via manipulation of excited electronic state lifetimes

Fedor Rudakov, Yao Zhang, Xinxin Cheng, and Peter M. Weber  »View Author Affiliations


Optics Letters, Vol. 38, Issue 21, pp. 4445-4448 (2013)
http://dx.doi.org/10.1364/OL.38.004445


View Full Text Article

Enhanced HTML    Acrobat PDF (460 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a technique for standoff trace chemical sensing that is based on the dependence of excited electronic state lifetimes on the amount of internal vibrational energy. The feasibility of the technique is demonstrated using N,N-dimethylisopropylamine (DMIPA). Time-resolved measurements show that the lifetime of the S1 state in DMIPA exponentially decreases with the amount of vibrational energy. This property is employed to acquire molecular spectral signatures. Two laser pulses are used: one ionizes the molecule through the S1 state; the other alters the S1 state lifetime by depositing energy into vibrations. Reduction of the S1 state lifetime decreases ionization efficiency that is observed by probing the laser-induced plasma with microwave radiation.

© 2013 Optical Society of America

OCIS Codes
(300.6350) Spectroscopy : Spectroscopy, ionization
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(280.1545) Remote sensing and sensors : Chemical analysis

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: August 22, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 11, 2013
Published: October 30, 2013

Citation
Fedor Rudakov, Yao Zhang, Xinxin Cheng, and Peter M. Weber, "Standoff trace chemical sensing via manipulation of excited electronic state lifetimes," Opt. Lett. 38, 4445-4448 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-21-4445


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1999).
  2. D. J. Phillips, E. A. Tanner, F. C. De Lucia, and H. O. Everitt, Phys. Rev. A 85, 052507 (2012). [CrossRef]
  3. P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).
  4. M. Ito, T. Ebata, and N. Mikami, Annu. Rev. Anal. Chem. 39, 123 (1988). [CrossRef]
  5. W. C. Ho, C. J. Pursell, D. P. Weliky, K. Takagi, and T. Oka, J. Chem. Phys. 93, 87 (1990). [CrossRef]
  6. M. Quack and F. Merkt, Handbook of High-Resolution Spectroscopy (Wiley2011), pp. 1911–1941.
  7. W. Bronner, P. Oesterlin, and M. Schellhorn, Appl. Phys. B 34, 11 (1984). [CrossRef]
  8. M. Silva, R. Jongma, R. W. Field, and A. M. Wodtke, Annu. Rev. Phys. Chem. 52, 811 (2001). [CrossRef]
  9. H.-L. Dai and R. W. Field, Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping (World Scientific, 1995).
  10. D. E. Cooper, C. M. Klimcak, and J. E. Wessel, Phys. Rev. Lett. 46, 324 (1981). [CrossRef]
  11. B. A. Jacobson, J. A. Guest, F. A. Novak, and S. Rice, J. Chem. Phys. 87, 269 (1987). [CrossRef]
  12. S. K. Kulkarni and J. E. Kenny, J. Chem. Phys. 89, 4441 (1988). [CrossRef]
  13. D. F. Heller, K. F. Freed, and W. Gelbart, J. Chem. Phys. 56, 2309 (1972). [CrossRef]
  14. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion. An Experimental and Theoretical Approach (Springer, 2013).
  15. J. L. Gosselin and P. M. Weber, J. Phys. Chem. A 109, 4899 (2005). [CrossRef]
  16. J. D. Cardoza, F. M. Rudakov, N. Hansen, and P. M. Weber, J. Electron Spectrosc. Relat. Phenom. 65, 15 (2008).
  17. F. Rudakov and P. M. Weber, J. Chem. Phys. 136, 134303 (2012). [CrossRef]
  18. S. Deb, B. A. Bayes, M. P. Minitti, and P. M. Weber, J. Phys. Chem. A 115, 1804 (2011). [CrossRef]
  19. F. Rudakov and Z. Zhang, Opt. Lett. 37, 145 (2012). [CrossRef]
  20. C. P. Schick, S. D. Carpenter, and P. M. Weber, J. Phys. Chem. A 103, 10470 (1999). [CrossRef]
  21. B. Kim, N. Thantu, and P. M. Weber, J. Chem. Phys. 97, 5384 (1992). [CrossRef]
  22. S. Deb, M. P. Minitti, and P. M. Weber, J. Chem. Phys. 135, 044319 (2011). [CrossRef]
  23. J. L. Gosselin, M. P. Minitti, F. M. Rudakov, T. I. Sølling, and P. M. Weber, J. Phys. Chem. A 110, 4251 (2006). [CrossRef]
  24. NIST Web book http://webbook.nist.gov/chemistry/ .
  25. Here and below 1 sigma are given for the error bars.
  26. In addition to the vibrational energy of the molecules in the beam.
  27. Arkema Inc. http://www.arkema-inc.com/tds/1461.pdf .
  28. M. N. Shneider, Z. Zhang, and R. B. Miles, J. Appl. Phys. 102, 123103 (2007). [CrossRef]
  29. Z. Zhang, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 98, 265005 (2007). [CrossRef]
  30. M. N. Shneider and R. B. Miles, J. Appl. Phys. 98, 033301 (2005). [CrossRef]
  31. A. Dogariu and R. B. Miles, Appl. Opt. 50, A68 (2011). [CrossRef]
  32. T. Kakinuma, M. Fujii, and M. Ito, Chem. Phys. Lett. 140, 427 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited