OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 21 — Nov. 1, 2013
  • pp: 4477–4479

Autocorrelation method for fractal analysis in nonrectangular image domains

Douglas H. MacDonald, Martin Hunter, Kyle P. Quinn, and Irene Georgakoudi  »View Author Affiliations

Optics Letters, Vol. 38, Issue 21, pp. 4477-4479 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an autocorrelation-based approach that accurately measures fractal organization within arbitrarily shaped (nonrectangular) regions of interest of gray-scale images. It extends fractal analysis beyond what is possible using fast Fourier transforms and improves on a previous autocorrelation algorithm. We illustrate its use in detecting subtle changes in mitochondrial organization within murine fibroblasts expressing the human papillomavirus E7 oncogene.

© 2013 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(100.4994) Image processing : Pattern recognition, image transforms
(100.4995) Image processing : Pattern recognition, metrics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 15, 2013
Revised Manuscript: October 4, 2013
Manuscript Accepted: October 10, 2013
Published: October 31, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Douglas H. MacDonald, Martin Hunter, Kyle P. Quinn, and Irene Georgakoudi, "Autocorrelation method for fractal analysis in nonrectangular image domains," Opt. Lett. 38, 4477-4479 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. F. Sensakovic, A. Starkey, and S. G. Armato, Med. Phys. 34, 3465 (2007). [CrossRef]
  2. F. Sabetghadam, S. Sharafatmandjoor, and F. Norouzi, J. Comput. Phys. 228, 55 (2009). [CrossRef]
  3. D. Nečas and P. Klapetek, Ultramicroscopy 124, 13 (2013). [CrossRef]
  4. J. A. Fessler and B. P. Sutton, IEEE Trans. Signal Process. 51, 560 (2003). [CrossRef]
  5. H. Gothwal, S. Kedawat, and R. Kumar, J. Biomed. Sci. Eng. 4, 289 (2011). [CrossRef]
  6. R. Rajeswari and P. Anandhakumar, ACEEE Int. J. Commun. 2, 1 (2011).
  7. J. Xylas, K. P. Quinn, M. Hunter, and I. Georgakoudi, Opt. Express 20, 23442 (2012). [CrossRef]
  8. A. J. Einstein, H.-S. Wu, and J. Gil, Phys. Rev. Lett. 80, 397 (1998). [CrossRef]
  9. K. Metze, Epigenomics 2, 601 (2010). [CrossRef]
  10. R. F. Voss, Phys. Scr. T13, 27 (1986). [CrossRef]
  11. H. S. Wu, A. J. Einstein, L. Deligdisch, T. Kalir, and J. Gil, Fractals 12, 157 (2004). [CrossRef]
  12. C. L. Nguyen and K. Münger, J. Virol. 83, 1700 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited