OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 22 — Nov. 15, 2013
  • pp: 4632–4635

Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials

Tatsunosuke Matsui, Ryosuke Takagi, Keisuke Takano, and Masanori Hangyo  »View Author Affiliations

Optics Letters, Vol. 38, Issue 22, pp. 4632-4635 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Terahertz (THz) transmission modulation through copper phthalocyanine (CuPc)-coated Si under various laser light irradiation conditions was investigated using THz time-domain spectroscopy. The charge carrier transfer from Si to CuPc is crucial for photo-induced metallization, and the thickness of the CuPc layer is a critical parameter for achieving high charge carrier density for metallization. Transmission through a split-ring resonator array metamaterial, fabricated on CuPc-coated Si, can be efficiently modulated by laser light irradiation. Our findings may open the way for various types of metamaterials using organic conjugated materials that are suitable for easy device fabrication using printing technologies.

© 2013 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(230.4110) Optical devices : Modulators
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: July 19, 2013
Revised Manuscript: October 6, 2013
Manuscript Accepted: October 7, 2013
Published: November 7, 2013

Tatsunosuke Matsui, Ryosuke Takagi, Keisuke Takano, and Masanori Hangyo, "Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials," Opt. Lett. 38, 4632-4635 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Shalaev, Nat. Photonics 1, 41 (2007). [CrossRef]
  2. H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010). [CrossRef]
  3. C. M. Soukoulis and M. Wegener, Nat. Photonics 5, 523 (2011).
  4. J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, Science 337, 549 (2012). [CrossRef]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theor. Tech. 47, 2075 (1999). [CrossRef]
  6. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Science 303, 1494 (2004). [CrossRef]
  7. K. Sakai, ed., Terahertz Optoelectronics (Springer, 2005).
  8. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006). [CrossRef]
  9. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006). [CrossRef]
  10. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, Nat. Photonics 3, 148 (2009). [CrossRef]
  11. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, Nat. Mater. 11, 936 (2012). [CrossRef]
  12. M. Rahm, J.-S. Li, and W. J. Padilla, J. Infrared Millimeter Waves 34, 1 (2013). [CrossRef]
  13. H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, Appl. Phys. Lett. 99, 061108 (2011). [CrossRef]
  14. Y. Nakato, M. Shioji, and H. Tsubomura, J. Phys. Chem. 85, 1670 (1981). [CrossRef]
  15. M. A. Green, Sol. Energy Mater. Sol. Cells 92, 1305 (2008). [CrossRef]
  16. K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, Appl. Phys. Express 3, 016701 (2010). [CrossRef]
  17. K. Takano, Y. Chiyoda, T. Nishida, F. Miyamaru, T. Kawabata, H. Sasaki, M. W. Takeda, and M. Hangyo, Appl. Phys. Lett. 99, 161114 (2011). [CrossRef]
  18. K. Murata and K. Masuda, Convertech & ePrint 1, 108 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited