OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 22 — Nov. 15, 2013
  • pp: 4663–4666

Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders

Venancio Calero, Pascuala García-Martínez, Jorge Albero, María M. Sánchez-López, and Ignacio Moreno  »View Author Affiliations


Optics Letters, Vol. 38, Issue 22, pp. 4663-4666 (2013)
http://dx.doi.org/10.1364/OL.38.004663


View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Unusually large phase modulation in a commercial liquid crystal spatial light modulator (LCSLM) is reported. Such a situation is obtained by illuminating with visible light a device designed to operate in the infrared range. The phase modulation range reaches 6π radians in the red region of the visible spectrum and 10π radians in the blue region. Excellent diffraction efficiency in high harmonic orders is demonstrated despite a concomitant and non-negligible Fabry–Perot interference effect. This type of SLM opens the possibility to implement diffractive elements with reduced chromatic dispersion or chromatic control.

© 2013 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(060.5060) Fiber optics and optical communications : Phase modulation
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Devices

History
Original Manuscript: July 31, 2013
Revised Manuscript: October 9, 2013
Manuscript Accepted: October 9, 2013
Published: November 8, 2013

Citation
Venancio Calero, Pascuala García-Martínez, Jorge Albero, María M. Sánchez-López, and Ignacio Moreno, "Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders," Opt. Lett. 38, 4663-4666 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-22-4663


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).
  2. P. Yeh and C. Gu, Optics of Liquid Crystals Displays, 2nd ed. (Wiley, 2010).
  3. U. Efron, S.-T. Wu, and T. D. Bates, J. Opt. Soc. Am. B 3, 247 (1986). [CrossRef]
  4. N. Konforti, E. Marom, and S.-T. Wu, Opt. Lett. 13, 251 (1988). [CrossRef]
  5. S.-T. Wu, Appl. Opt. 28, 48 (1989). [CrossRef]
  6. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, Appl. Opt. 43, 6278 (2004). [CrossRef]
  7. J. A. Davis, J. Nicolas, and A. Marquez, Appl. Opt. 41, 4579 (2002). [CrossRef]
  8. J. L. Martínez, I. Moreno, J. A. Davis, T. J. Hernández, and K. P. McAuley, Appl. Opt. 49, 5929 (2010). [CrossRef]
  9. J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013). [CrossRef]
  10. K.-H. Fan-Chiang, S.-T. Wu, and S.-H. Chen, J. Disp. Technol. 1, 304 (2005). [CrossRef]
  11. H. Dammann, Appl. Opt. 17, 2273 (1978). [CrossRef]
  12. D. Faklis and G. M. Morris, Appl. Opt. 34, 2462 (1995). [CrossRef]
  13. D. W. Sweeney and G. E. Sommargren, Appl. Opt. 34, 2469 (1995). [CrossRef]
  14. J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, Opt. Eng. 38, 1051 (1999). [CrossRef]
  15. S.-T. Wu, Phys. Rev. A 33, 1270 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited