OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 22 — Nov. 15, 2013
  • pp: 4727–4730

Cylindrical quasi-Gaussian beams

F. G. Mitri  »View Author Affiliations


Optics Letters, Vol. 38, Issue 22, pp. 4727-4730 (2013)
http://dx.doi.org/10.1364/OL.38.004727


View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Making use of the complex-source-point method in cylindrical coordinates, an exact solution representing a cylindrical quasi-Gaussian beam of arbitrary waist w 0 satisfying both the Helmholtz and Maxwell’s equations is introduced. The Cartesian components of the electromagnetic field are derived stemming from different polarizations of the magnetic and electric vector potentials based on Maxwell’s vectorial equations and Lorenz’s gauge condition, without any approximations. Computations illustrate the theory for tightly focused and quasi-collimated cylindrical beams. The results are particularly useful in beam-forming design using high-aperture or collimated cylindrical laser beams in imaging microscopy, particle manipulation, optical tweezers, and the study of scattering, radiation forces, and torque on cylindrical structures.

© 2013 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

History
Original Manuscript: September 13, 2013
Manuscript Accepted: October 8, 2013
Published: November 12, 2013

Citation
F. G. Mitri, "Cylindrical quasi-Gaussian beams," Opt. Lett. 38, 4727-4730 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-22-4727


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Marsh, Am. J. Phys. 52, 152 (1984). [CrossRef]
  2. K. Youngworth and T. Brown, Opt. Express 7, 77 (2000). [CrossRef]
  3. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  4. Y. Kozawa and S. Sato, Opt. Express 18, 10828 (2010). [CrossRef]
  5. C. J. R. Sheppard, Appl. Opt. 52, 538 (2013). [CrossRef]
  6. E. Heyman and L. B. Felsen, J. Opt. Soc. Am. A 18, 1588 (2001). [CrossRef]
  7. L. B. Felsen, J. Opt. Soc. Am. 66, 751 (1976). [CrossRef]
  8. L. B. Felsen, Geophys. J. R. Astr. Soc. 79, 77 (1984). [CrossRef]
  9. Y. A. Kravtsov, Radiophys. Quantum Electron. 10, 719 (1967). [CrossRef]
  10. G. A. Deschamps, Electron. Lett. 7, 684 (1971). [CrossRef]
  11. J. B. Keller and W. Streifer, J. Opt. Soc. Am. 61, 40 (1971). [CrossRef]
  12. M. Couture and P. A. Belanger, Phys. Rev. A 24, 355 (1981). [CrossRef]
  13. C. J. R. Sheppard and S. Saghafi, Phys. Rev. A 57, 2971 (1998). [CrossRef]
  14. A. E. Siegman, Lasers (University Science Books, 1986).
  15. E. Heyman, B. Z. Steinberg, and L. B. Felsen, J. Opt. Soc. Am. A 4, 2081 (1987). [CrossRef]
  16. M. V. Berry, J. Phys. A 27, L391 (1994). [CrossRef]
  17. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987). [CrossRef]
  18. J. Durnin, J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987). [CrossRef]
  19. A. L. Cullen and P. K. Yu, Proc. R. Soc. London 366, 155 (1979). [CrossRef]
  20. F. G. Mitri, Opt. Lett. 36, 606 (2011). [CrossRef]
  21. F. G. Mitri, Opt. Lett. 38, 615 (2013). [CrossRef]
  22. F. G. Mitri, Phys. Rev. A 85, 025801 (2012). [CrossRef]
  23. F. G. Mitri, Optik 124, 1469 (2013). [CrossRef]
  24. F. G. Mitri, Eur. Phys. J. D 67, 1 (2013). [CrossRef]
  25. F. G. Mitri, Phys. Rev. A 88, 035804 (2013). [CrossRef]
  26. F. G. Mitri, Phys. Rev. A 87, 035804 (2013). [CrossRef]
  27. E. Heyman, B. Z. Steinberg, and R. Iancunescu, IEEE Trans. Antennas Propag. 38, 957 (1990). [CrossRef]
  28. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  29. L. W. Davis and G. Patsakos, Opt. Lett. 6, 22 (1981). [CrossRef]
  30. J. P. Barton, J. Opt. Soc. Am. A 16, 160 (1999). [CrossRef]
  31. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories, 1st ed. (Springer, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited