OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 22 — Nov. 15, 2013
  • pp: 4758–4761

Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film

Arash Farhang, Nicolas Bigler, and Olivier J. F. Martin  »View Author Affiliations

Optics Letters, Vol. 38, Issue 22, pp. 4758-4761 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the coupling interactions between a progressively elongated silver nanoparticle and a silver film on a glass substrate. Specifically, we investigate how the coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) is influenced by nanoparticle length. Although the multiple resonances supported by the nanoparticle are effectively standing wave surface plasmons, their interaction with the SPP continuum of the underlying Ag film indicates that their spectral response is still localized in nature. It is found that these LSP–SPP interactions are not limited to small particles, but that they are present as well for extremely long particles, with a transition to the SPP coupling interactions of a bilayer metallic film system beginning at a particle length of approximately 5 μm.

© 2013 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: June 19, 2013
Revised Manuscript: September 17, 2013
Manuscript Accepted: October 16, 2013
Published: November 12, 2013

Arash Farhang, Nicolas Bigler, and Olivier J. F. Martin, "Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film," Opt. Lett. 38, 4758-4761 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008). [CrossRef]
  2. B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, Nano Today 4(3), 244 (2009). [CrossRef]
  3. W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, J. Phys. Chem. C 113, 14672 (2009). [CrossRef]
  4. D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011). [CrossRef]
  5. M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012). [CrossRef]
  6. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, Opt. Express 20, 12860 (2012). [CrossRef]
  7. P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004). [CrossRef]
  8. F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, Phys. Rev. B 76, 165410 (2007). [CrossRef]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef]
  10. T. Sondergaard and S. I. Bozhevolnyi, Phys. Rev. B 69, 045422 (2004). [CrossRef]
  11. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005). [CrossRef]
  12. W. R. Holland and D. G. Hall, Phys. Rev. B 27, 7765 (1983). [CrossRef]
  13. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, Opt. Lett. 30, 3404 (2005). [CrossRef]
  14. G. Lévêque and O. J. F. Martin, Opt. Express 14, 9971 (2006). [CrossRef]
  15. N. Papanikolaou, Phys. Rev. B 75, 235426 (2007). [CrossRef]
  16. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, Opt. Express 15, 10533 (2007). [CrossRef]
  17. A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008). [CrossRef]
  18. G. Lévêque and R. Quidant, Opt. Express 16, 22029 (2008). [CrossRef]
  19. Y. Chu and K. B. Crozier, Opt. Lett. 34, 244 (2009). [CrossRef]
  20. D. Brunazzo, E. Descrovi, and O. J. F. Martin, Opt. Lett. 34, 1405 (2009). [CrossRef]
  21. J. DiMaria and R. Paiella, J. Appl. Phys. 111, 103102 (2012). [CrossRef]
  22. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  23. M. Paulus and O. J. F. Martin, Phys. Rev. E 63, 066615 (2001). [CrossRef]
  24. A. Farhang and O. J. F. Martin, Opt. Express 19, 11387 (2011). [CrossRef]
  25. A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008). [CrossRef]
  26. A. Ghoshal, I. Divliansky, and P. G. Kik, Appl. Phys. Lett. 94, 171108 (2009). [CrossRef]
  27. S. Dutta-Gupta and O. J. F. Martin, J. Appl. Phys. 110, 044701 (2011). [CrossRef]
  28. B. E. A. Saleh and M. C. Teich, “Guided-wave optics,” in Fundamentals of Photonics (Wiley, 2001), pp. 238–271.
  29. D. Pozar, Microwave Engineering (Wiley, 1997).
  30. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 79, 8 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited