OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 23 — Dec. 1, 2013
  • pp: 5036–5039

Photothermal nonlinearity and optical bistability in a graphene–silicon waveguide resonator

Cameron Horvath, Daniel Bachman, Rob Indoe, and Vien Van  »View Author Affiliations


Optics Letters, Vol. 38, Issue 23, pp. 5036-5039 (2013)
http://dx.doi.org/10.1364/OL.38.005036


View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report observation of optical bistability and enhanced thermal nonlinearity in a graphene–silicon waveguide resonator. Photo-induced Joule heating in the graphene layer gives rise to a temperature increase in the silicon waveguide core and a corresponding thermo-optic shift in the resonance of the Fabry–Perot resonator. Measurement of the nonlinear resonance spectra showed a 9-fold increase in the effective thermal nonlinear index due to the graphene layer compared with a bare silicon waveguide.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(190.1450) Nonlinear optics : Bistability
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4870) Nonlinear optics : Photothermal effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 9, 2013
Manuscript Accepted: October 15, 2013
Published: November 22, 2013

Citation
Cameron Horvath, Daniel Bachman, Rob Indoe, and Vien Van, "Photothermal nonlinearity and optical bistability in a graphene–silicon waveguide resonator," Opt. Lett. 38, 5036-5039 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-23-5036


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Kim and C. G. Choi, Opt. Express 20, 3556 (2012).
  2. A. Locatelli, A. Capobianco, M. Midrio, S. Boscolo, and C. De Angelis, Opt. Express 20, 28479 (2012). [CrossRef]
  3. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, Nat. Photonics 6, 554 (2012). [CrossRef]
  4. D. Perron, M. Wu, C. Horvath, D. Bachman, and V. Van, Opt. Lett. 36, 2731 (2011). [CrossRef]
  5. Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J. B. Xu, IEEE J. Sel. Topics Quantum Electron. 20, 1 (2014).
  6. Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, P. M. Ajayan, and J. M. Tour, ACS Nano 5, 8187 (2011).
  7. J. Kang, D. Shin, S. Bae, and B. H. Hong, Nanoscale 4, 5527 (2012). [CrossRef]
  8. L. A. Falkovsky, J. Phys. Conf. Ser. 129, 012004 (2008). [CrossRef]
  9. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
  10. A. Grieco, B. Slutsky, D. T. H. Tan, S. Zamek, M. P. Nezhad, and Y. Fainman, J. Lightwave Technol. 30, 2352 (2012). [CrossRef]
  11. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008), pp. 359–365.
  12. H. Li, Y. Anugrah, S. J. Koester, and M. Li, Appl. Phys. Lett. 101, 111110 (2012).
  13. J. M. Cariou, J. Dugas, L. Martin, and P. Michel, Appl. Opt. 25, 334 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited