OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 23 — Dec. 1, 2013
  • pp: 5083–5086

Tunable supercontinuum light vector vortex beam generator using a q-plate

Yisa S. Rumala, Giovanni Milione, Thien An Nguyen, Sebastião Pratavieira, Zabir Hossain, Daniel Nolan, Sergei Slussarenko, Ebrahim Karimi, Lorenzo Marrucci, and Robert R. Alfano  »View Author Affiliations


Optics Letters, Vol. 38, Issue 23, pp. 5083-5086 (2013)
http://dx.doi.org/10.1364/OL.38.005083


View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spatially coherent multicolored optical vector vortex beams were created using a tunable liquid crystal q-plate and a supercontinuum light source. The feasibility of the q-plate as a tunable spectral filter (switch) was demonstrated, and the polarization topology of the resulting vector vortex beam was mapped. Potential applications include multiplexing for broadband high-speed optical communication, ultradense data networking, and super-resolution microscopy.

© 2013 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(260.5430) Physical optics : Polarization
(350.2460) Other areas of optics : Filters, interference
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: August 19, 2013
Revised Manuscript: October 27, 2013
Manuscript Accepted: October 27, 2013
Published: November 25, 2013

Citation
Yisa S. Rumala, Giovanni Milione, Thien An Nguyen, Sebastião Pratavieira, Zabir Hossain, Daniel Nolan, Sergei Slussarenko, Ebrahim Karimi, Lorenzo Marrucci, and Robert R. Alfano, "Tunable supercontinuum light vector vortex beam generator using a q-plate," Opt. Lett. 38, 5083-5086 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-23-5083


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009). [CrossRef]
  2. L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006). [CrossRef]
  3. G. Biener, A. Niv, V. Kleiner, and E. Hasman, Opt. Lett. 27, 1875 (2002). [CrossRef]
  4. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, Appl. Phys. Lett. 94, 231124 (2009). [CrossRef]
  5. B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, Appl. Phys. Lett. 97, 241104 (2010). [CrossRef]
  6. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, Opt. Express 19, 4085 (2011). [CrossRef]
  7. R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970). [CrossRef]
  8. R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 584 (1970). [CrossRef]
  9. R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 1217 (1970). [CrossRef]
  10. R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).
  11. Y. S. Rumala, S. Pratavieira, G. Milione, T. A. Nguyen, Z. Hossain, D. Nolan, E. Karimi, S. Slussarenko, L. Marrucci, and R. R. Alfano, in Proceedings of Frontiers in Optics (Optical Society of America, 2013), paper FTu1F.
  12. G. A. Swartzlander and J. Schmit, Phys. Rev. Lett. 93, 093901 (2004). [CrossRef]
  13. Y. Tokizane, K. Oka, and R. Morita, Opt. Express 17, 14517 (2009). [CrossRef]
  14. J. Leach and M. J. Padgett, New J. Phys. 5, 154 (2003). [CrossRef]
  15. M. E. Anderson, H. Bigman, L. E. E. de Araujo, and J. L. Chaloupka, J. Opt. Soc. Am. B 29, 1968 (2012). [CrossRef]
  16. H. I. Sztul, V. Kartazayev, and R. R. Alfano, Opt. Lett. 31, 2725 (2006). [CrossRef]
  17. Y. S. Rumala and A. E. Leanhardt, J. Opt. Soc. Am. B 30, 615 (2013). [CrossRef]
  18. I. Zeylikovich, V. Kartazaev, and R. R. Alfano, J. Opt. Soc. Am. B 22, 1453 (2005). [CrossRef]
  19. H. Takara, Opt. Photon. News 13(2), 48 (2002). [CrossRef]
  20. O. Boyraz and M. N. Islam, J. Lightwave Technol. 20, 1493 (2002). [CrossRef]
  21. H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, Electron. Lett. 41, 270 (2005). [CrossRef]
  22. P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701 (2006). [CrossRef]
  23. S. Bhandare, D. Sandel, B. Milivojevic, A. Hidayat, A. A. Fauzi, H. Zhang, S. K. Ibrahim, F. Wust, and R. Noe, IEEE Photon. Technol. Lett. 17, 914 (2005). [CrossRef]
  24. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012). [CrossRef]
  25. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Science 340, 1545 (2013). [CrossRef]
  26. E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, Opt. Lett. 37, 127 (2012). [CrossRef]
  27. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’Ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004). [CrossRef]
  28. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011). [CrossRef]
  29. G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 108, 190401 (2012). [CrossRef]
  30. T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Opt. Express 18, 10848 (2010). [CrossRef]
  31. Y. A. Egorov, T. A. Fadeyeva, and A. V. Volyar, J. Opt. A 6, S217 (2004). [CrossRef]
  32. A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 32, 847 (2007). [CrossRef]
  33. E. Brasslet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009). [CrossRef]
  34. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. Lisio, and E. Santamato, Appl. Opt. 51, C1 (2012). [CrossRef]
  35. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006). [CrossRef]
  36. Measurement of S3 is not necessary as there appears to be greater than 90% agreement between S02 and S12+S22 for pixels with a large number of counts (i.e., S02≈S12+S22). Therefore, polarization of the vector vortex mode is expected to be mostly linear.
  37. The purity of colors is quantified in the barchart below each image. The barchart is a measure of the response of the CCD to the relative red (R), blue (B), and green (G) colors present in the beam. All other visible colors are extrapolated from these RGB colors. Hence, the barcharts in Figs. 3(b) and 3(d) have the most counts in red and green, respectively, and show clear discrimination from other colors in the beam. Since yellow is largely a mixture of red and green counts in pixels, these two colors will have the most counts compared to other colors in the beam, which is consistent with the CCD sensor spectral response to different colors. The CCD data sheets can be found at http://ww2.ptgrey.com/USB2/chameleon .
  38. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2006). [CrossRef]
  39. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, Opt. Express 16, 9614 (2008). [CrossRef]
  40. T. J. Gould, E. B. Kromann, D. Burke, M. J. Booth, and J. Bewersdorf, Opt. Lett. 38, 1860 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited