OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 24 — Dec. 15, 2013
  • pp: 5292–5295

High conversion efficiency microwave photonic mixer based on stimulated Brillouin scattering carrier suppression technique

Erwin H. W. Chan and Robert A. Minasian  »View Author Affiliations


Optics Letters, Vol. 38, Issue 24, pp. 5292-5295 (2013)
http://dx.doi.org/10.1364/OL.38.005292


View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new microwave photonic mixer that can achieve a high conversion efficiency is presented. It is based on using the stimulated Brillouin scattering loss spectrum to suppress the optical carrier at the output of two optical phase modulators driven by the RF signal and the LO, respectively. Experimental results are presented, which demonstrate a high conversion efficiency of 11.3 dB corresponding to over 26 dB improvement compared to the conventional dual-series Mach–Zehnder modulator based microwave photonic mixer, and wide bandwidth of 0.2 to 20 GHz mixing operation.

© 2013 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(290.5900) Scattering : Scattering, stimulated Brillouin
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 3, 2013
Revised Manuscript: October 27, 2013
Manuscript Accepted: November 6, 2013
Published: December 5, 2013

Citation
Erwin H. W. Chan and Robert A. Minasian, "High conversion efficiency microwave photonic mixer based on stimulated Brillouin scattering carrier suppression technique," Opt. Lett. 38, 5292-5295 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-24-5292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, IEEE Trans. Microw. Theory Tech. 41, 2383 (1993).
  2. C. K. Sun, R. J. Orazi, and S. A. Pappert, IEEE Photon. Technol. Lett. 8, 154 (1996). [CrossRef]
  3. M. M. Howerton, R. P. Moeller, G. K. Gopalakrishnan, and W. K. Burns, IEEE Photon. Technol. Lett. 8, 1692 (1996). [CrossRef]
  4. R. Helkey, J. C. Twichell, and C. Cox, J. Lightwave Technol. 15, 956 (1997). [CrossRef]
  5. S. R. O’Connor, M. C. Gross, M. L. Dennis, and T. R. Clark, IEEE International Topical Meeting on Microwave Photonics (IEEE, 2009).
  6. B. M. Haas and T. E. Murphy, IEEE International Topical Meeting on Microwave Photonics (IEEE, 2009).
  7. E. H. W. Chan and R. A. Minasian, J. Lightwave Technol. 30, 3580 (2012). [CrossRef]
  8. M. E. Manka, IEEE International Topical Meeting on Microwave Photonics (IEEE, 2008).
  9. A. Loayssa, D. Benito, and M. J. Garde, Opt. Fiber Technol. 8, 24 (2002). [CrossRef]
  10. A. C. Lindsay, G. A. Knight, and S. T. Winnall, IEEE Trans. Microw. Theory Tech. 43, 2311 (1995). [CrossRef]
  11. X. S. Yao, IEEE Photon. Technol. Lett. 12, 1382 (2000). [CrossRef]
  12. C. S. Park, C. G. Lee, and C. S. Park, IEEE Photon. Technol. Lett. 19, 777 (2007). [CrossRef]
  13. S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, IEEE Photon. Technol. Lett. 13, 364 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited