OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 24 — Dec. 15, 2013
  • pp: 5296–5298

Calculation of the volumetric diffracted field with a three-dimensional convolution: the three-dimensional angular spectrum method

Shan Shan Kou, Colin J. R. Sheppard, and Jiao Lin  »View Author Affiliations

Optics Letters, Vol. 38, Issue 24, pp. 5296-5298 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The first Rayleigh–Sommerfeld diffraction formula is treated in an exact form as a three-dimensional (3D) convolution in the spatial domain. Therefore, a 3D Fourier transform can be employed to convert the 3D diffracted electromagnetic field to the reciprocal space without approximations, which we call the 3D angular spectrum (3D-AS) method. It is also demonstrated that if evanescent waves are neglected, the 3D-AS method can be readily implemented numerically, with the results in good agreement with theoretical predictions.

© 2013 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(180.6900) Microscopy : Three-dimensional microscopy
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:

Original Manuscript: September 25, 2013
Manuscript Accepted: November 6, 2013
Published: December 5, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Shan Shan Kou, Colin J. R. Sheppard, and Jiao Lin, "Calculation of the volumetric diffracted field with a three-dimensional convolution: the three-dimensional angular spectrum method," Opt. Lett. 38, 5296-5298 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  2. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999). [CrossRef]
  3. P. Ferraro, S. Grilli, D. Alfieri, S. D. Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, Opt. Express 13, 6738 (2005). [CrossRef]
  4. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).
  5. J. A. C. Veerman, J. J. Rusch, and H. P. Urbach, J. Opt. Soc. Am. A 22, 636 (2005). [CrossRef]
  6. R. L. Lucke, Eur. J. Phys. 27, 193 (2006). [CrossRef]
  7. A. M. Steane and H. N. Rutt, J. Opt. Soc. Am. A 6, 1809 (1989). [CrossRef]
  8. C. J. R. Sheppard and M. Hrynevych, J. Opt. Soc. Am. A 9, 274 (1992). [CrossRef]
  9. J. Lin, X. C. Yuan, S. S. Kou, C. J. R. Sheppard, O. G. Rodguez-Herrera, and J. C. Dainty, Opt. Lett. 36, 1341 (2011). [CrossRef]
  10. C. W. McCutchen, J. Opt. Soc. Am. 54, 240 (1964). [CrossRef]
  11. P. Andrés, M. Martinez-Corral, and Ojeda-Castañeda, Opt. Lett. 18, 1290 (1993). [CrossRef]
  12. P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Pergamon, 1966).
  13. R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed. (McGraw-Hill, 2000).
  14. C. J. R. Sheppard, J. Lin, and S. S. Kou, J. Opt. Soc. Am. A 30, 1180 (2013). [CrossRef]
  15. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, 1975).
  16. A. E. Siegman, Lasers (University Science, 1986).
  17. Y. Li and E. Wolf, J. Opt. Soc. Am. A 1, 801 (1984). [CrossRef]
  18. H. Osterberg and L. W. Smith, J. Opt. Soc. Am. 51, 1050 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited