OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 24 — Dec. 15, 2013
  • pp: 5342–5345

Broadband charge transfer dynamics in P3HT:PCBM blended film

Sheng Hsiung Chang, Chien-Hung Chiang, Hsin-Ming Cheng, Chao-Yi Tai, and Chun-Guey Wu  »View Author Affiliations


Optics Letters, Vol. 38, Issue 24, pp. 5342-5345 (2013)
http://dx.doi.org/10.1364/OL.38.005342


View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Broadband exciton dynamics in P3HT:PCBM blended film was observed by the femtosecond time-resolved photoluminescence sum-frequency technique. Onsager–Braun theory is applied to analyze the distribution of charge transfer radius at different energy levels. In our evaluation, the optimal diameter of P3HT fiber is about 14.3 nm for achieving the best exciton dissociation in P3HT:PCBM blended films. This technique can be readily used in the optimization of high-efficiency organic photovoltaics.

© 2013 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(250.5230) Optoelectronics : Photoluminescence
(260.2160) Physical optics : Energy transfer

ToC Category:
Optoelectronics

History
Original Manuscript: October 24, 2013
Revised Manuscript: November 11, 2013
Manuscript Accepted: November 12, 2013
Published: December 9, 2013

Citation
Sheng Hsiung Chang, Chien-Hung Chiang, Hsin-Ming Cheng, Chao-Yi Tai, and Chun-Guey Wu, "Broadband charge transfer dynamics in P3HT:PCBM blended film," Opt. Lett. 38, 5342-5345 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-24-5342


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. He, C. Zhong, S. Su, M. Xu, and Y. Cao, Nat. Photonics 6, 591 (2012).
  2. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005). [CrossRef]
  3. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 572 (2006). [CrossRef]
  4. M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, Proc. Natl. Acad. Sci. USA 105, 2783 (2008).
  5. J. W. Jung, J. U. Lee, and W. H. Jo, J. Phys. Chem. C 114, 633 (2010). [CrossRef]
  6. W. Yu, L. Shen, S. Ruan, F. Meng, J. Wang, E. Zhang, and W. Chen, Sol. Energy Mater. Sol. Cells 98, 212 (2012). [CrossRef]
  7. P. Xu, L. Shen, F. Meng, J. Zhang, W. Xie, W. Yu, W. Guo, X. Jia, and S. Ruan, Appl. Phys. Lett. 102, 123301 (2013). [CrossRef]
  8. X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, and Y. Li, Energ. Environ. Sci. 5, 7943 (2012).
  9. R. A. Marsh, J. M. Hodgkiss, S. Albert-Seifried, and R. H. Friend, Nano Lett. 10, 923 (2010). [CrossRef]
  10. E. Veploegen, C. E. Miller, K. Schmidt, Z. Bao, and M. F. Toney, Chem. Mater. 24, 3923 (2012). [CrossRef]
  11. J. Pearson, T. Wang, R. A. L. Jones, and D. G. Lidzey, Macromolecules 45, 1499 (2012). [CrossRef]
  12. K. M. Coakley, B. S. Srinivasan, J. M. Ziebarth, C. Coh, Y. Liu, and M. D. McGehee, Adv. Funct. Mater. 15, 1927 (2005). [CrossRef]
  13. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5, 579 (2005). [CrossRef]
  14. V. Shrotriya, Y. Yao, G. Li, and Y. Yang, Appl. Phys. Lett. 89, 063505 (2006). [CrossRef]
  15. J. S. Moon, J. K. Kee, S. Cho, J. Byun, and A. J. Heeger, Nano Lett. 9, 230 (2009). [CrossRef]
  16. P. E. Shaw, A. Ruseckas, and I. D. W. Samul, Adv. Mater. 20, 3516 (2008). [CrossRef]
  17. H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, Nanoscale 3, 2280 (2011). [CrossRef]
  18. M. Omer, J. Nano-Electron. Phys. 5, 03010 (2013).
  19. C. Soic, I.-W. Hwang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, Adv. Funct. Mater. 17, 632 (2007). [CrossRef]
  20. N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, J. Phys. Chem. C 115, 9726 (2011). [CrossRef]
  21. G. R. Hayes, I. D. W. Samuel, and R. T. Phillips, Phys. Rev. B 52, R11569 (1995). [CrossRef]
  22. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Adv. Funct. Mater. 16, 2016 (2006). [CrossRef]
  23. A. Kumar, G. Li, Z. Hong, and Y. Yang, Nanotechnology 20, 165202 (2009). [CrossRef]
  24. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. A. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-K. Ha, and M. Ree, Nat. Mater. 5, 197 (2006). [CrossRef]
  25. G. R. Hayes, I. D. W. Samuel, and R. T. Phillips, Phys. Rev. B 52, R11569 (1995). [CrossRef]
  26. J.-L. Bredas, J. Cornil, and A. J. Heeger, Adv. Mater. 8, 447 (1996). [CrossRef]
  27. Y. Xie, Y. Li, L. Xiao, Q. Qiao, R. Dhakal, Z. Zhang, Q. Gong, D. Galipeau, and X. Yan, J. Phys. Chem. C 114, 14590 (2010). [CrossRef]
  28. C. Deibel, T. Strobel, and V. Dyakonov, Phys. Rev. Lett. 103, 036402 (2009). [CrossRef]
  29. L. Onsager, Phys. Rev. 54, 554 (1938). [CrossRef]
  30. L. Braun, J. Chem. Phys. 80, 4157 (1984). [CrossRef]
  31. K. Agroui, A. H. Arab, M. Pellegrino, F. Giovanni, and I. H. Mahammad, Revue des Energies Renouvelables 14, 469 (2011).
  32. R. Colle, G. Grosso, A. Ronzani, and C. M. Zicovich-Wilson, Phys. Status Solidi B 248, 1360 (2011). [CrossRef]
  33. C. H. Kim, K. Kisiel, J. Jung, J. Ulanski, D. Tondelier, B. Geffroy, Y. Bonnassieux, and G. Horowitz, Synth. Met. 162, 460 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited