OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 24 — Dec. 15, 2013
  • pp: 5342–5345

Broadband charge transfer dynamics in P3HT:PCBM blended film

Sheng Hsiung Chang, Chien-Hung Chiang, Hsin-Ming Cheng, Chao-Yi Tai, and Chun-Guey Wu  »View Author Affiliations

Optics Letters, Vol. 38, Issue 24, pp. 5342-5345 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband exciton dynamics in P3HT:PCBM blended film was observed by the femtosecond time-resolved photoluminescence sum-frequency technique. Onsager–Braun theory is applied to analyze the distribution of charge transfer radius at different energy levels. In our evaluation, the optimal diameter of P3HT fiber is about 14.3 nm for achieving the best exciton dissociation in P3HT:PCBM blended films. This technique can be readily used in the optimization of high-efficiency organic photovoltaics.

© 2013 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(250.5230) Optoelectronics : Photoluminescence
(260.2160) Physical optics : Energy transfer

ToC Category:

Original Manuscript: October 24, 2013
Revised Manuscript: November 11, 2013
Manuscript Accepted: November 12, 2013
Published: December 9, 2013

Sheng Hsiung Chang, Chien-Hung Chiang, Hsin-Ming Cheng, Chao-Yi Tai, and Chun-Guey Wu, "Broadband charge transfer dynamics in P3HT:PCBM blended film," Opt. Lett. 38, 5342-5345 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. He, C. Zhong, S. Su, M. Xu, and Y. Cao, Nat. Photonics 6, 591 (2012).
  2. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005). [CrossRef]
  3. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 572 (2006). [CrossRef]
  4. M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, Proc. Natl. Acad. Sci. USA 105, 2783 (2008).
  5. J. W. Jung, J. U. Lee, and W. H. Jo, J. Phys. Chem. C 114, 633 (2010). [CrossRef]
  6. W. Yu, L. Shen, S. Ruan, F. Meng, J. Wang, E. Zhang, and W. Chen, Sol. Energy Mater. Sol. Cells 98, 212 (2012). [CrossRef]
  7. P. Xu, L. Shen, F. Meng, J. Zhang, W. Xie, W. Yu, W. Guo, X. Jia, and S. Ruan, Appl. Phys. Lett. 102, 123301 (2013). [CrossRef]
  8. X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, and Y. Li, Energ. Environ. Sci. 5, 7943 (2012).
  9. R. A. Marsh, J. M. Hodgkiss, S. Albert-Seifried, and R. H. Friend, Nano Lett. 10, 923 (2010). [CrossRef]
  10. E. Veploegen, C. E. Miller, K. Schmidt, Z. Bao, and M. F. Toney, Chem. Mater. 24, 3923 (2012). [CrossRef]
  11. J. Pearson, T. Wang, R. A. L. Jones, and D. G. Lidzey, Macromolecules 45, 1499 (2012). [CrossRef]
  12. K. M. Coakley, B. S. Srinivasan, J. M. Ziebarth, C. Coh, Y. Liu, and M. D. McGehee, Adv. Funct. Mater. 15, 1927 (2005). [CrossRef]
  13. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5, 579 (2005). [CrossRef]
  14. V. Shrotriya, Y. Yao, G. Li, and Y. Yang, Appl. Phys. Lett. 89, 063505 (2006). [CrossRef]
  15. J. S. Moon, J. K. Kee, S. Cho, J. Byun, and A. J. Heeger, Nano Lett. 9, 230 (2009). [CrossRef]
  16. P. E. Shaw, A. Ruseckas, and I. D. W. Samul, Adv. Mater. 20, 3516 (2008). [CrossRef]
  17. H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, Nanoscale 3, 2280 (2011). [CrossRef]
  18. M. Omer, J. Nano-Electron. Phys. 5, 03010 (2013).
  19. C. Soic, I.-W. Hwang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, Adv. Funct. Mater. 17, 632 (2007). [CrossRef]
  20. N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, J. Phys. Chem. C 115, 9726 (2011). [CrossRef]
  21. G. R. Hayes, I. D. W. Samuel, and R. T. Phillips, Phys. Rev. B 52, R11569 (1995). [CrossRef]
  22. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Adv. Funct. Mater. 16, 2016 (2006). [CrossRef]
  23. A. Kumar, G. Li, Z. Hong, and Y. Yang, Nanotechnology 20, 165202 (2009). [CrossRef]
  24. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. A. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-K. Ha, and M. Ree, Nat. Mater. 5, 197 (2006). [CrossRef]
  25. G. R. Hayes, I. D. W. Samuel, and R. T. Phillips, Phys. Rev. B 52, R11569 (1995). [CrossRef]
  26. J.-L. Bredas, J. Cornil, and A. J. Heeger, Adv. Mater. 8, 447 (1996). [CrossRef]
  27. Y. Xie, Y. Li, L. Xiao, Q. Qiao, R. Dhakal, Z. Zhang, Q. Gong, D. Galipeau, and X. Yan, J. Phys. Chem. C 114, 14590 (2010). [CrossRef]
  28. C. Deibel, T. Strobel, and V. Dyakonov, Phys. Rev. Lett. 103, 036402 (2009). [CrossRef]
  29. L. Onsager, Phys. Rev. 54, 554 (1938). [CrossRef]
  30. L. Braun, J. Chem. Phys. 80, 4157 (1984). [CrossRef]
  31. K. Agroui, A. H. Arab, M. Pellegrino, F. Giovanni, and I. H. Mahammad, Revue des Energies Renouvelables 14, 469 (2011).
  32. R. Colle, G. Grosso, A. Ronzani, and C. M. Zicovich-Wilson, Phys. Status Solidi B 248, 1360 (2011). [CrossRef]
  33. C. H. Kim, K. Kisiel, J. Jung, J. Ulanski, D. Tondelier, B. Geffroy, Y. Bonnassieux, and G. Horowitz, Synth. Met. 162, 460 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited