OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 24 — Dec. 15, 2013
  • pp: 5401–5404

Measuring mechanical strain and twist using helical photonic crystal fiber

Xiaoming Xi, Gordon K. L. Wong, Thomas Weiss, and Philip St.J. Russell  »View Author Affiliations


Optics Letters, Vol. 38, Issue 24, pp. 5401-5404 (2013)
http://dx.doi.org/10.1364/OL.38.005401


View Full Text Article

Enhanced HTML    Acrobat PDF (515 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Solid-core photonic crystal fiber (PCF) with a permanent helical twist exhibits dips in its transmission spectrum at certain wavelengths. These are associated with the formation of orbital angular momentum states in the cladding. Here we investigate the tuning of these states with mechanical torque and axial tension. The dip wavelengths are found to scale linearly with both axial strain and mechanical twist rate. Analysis shows that the tension-induced shift in resonance wavelength is determined both by the photoelastic effect and by the change in twist rate, while the torsion-induced wavelength shift depends only on the change in twist rate. Twisted PCF can act as an effective optically monitored torque-tension transducer, twist sensor, or strain gauge.

© 2013 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 3, 2013
Revised Manuscript: November 7, 2013
Manuscript Accepted: November 12, 2013
Published: December 10, 2013

Citation
Xiaoming Xi, Gordon K. L. Wong, Thomas Weiss, and Philip St.J. Russell, "Measuring mechanical strain and twist using helical photonic crystal fiber," Opt. Lett. 38, 5401-5404 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-24-5401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. D. Birch, Electron. Lett. 23, 50 (1987). [CrossRef]
  2. C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991). [CrossRef]
  3. S. Oh, K. R. Lee, U.-C. Paek, and Y. Chung, Opt. Lett. 29, 1464 (2004). [CrossRef]
  4. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, Science 305, 74 (2004). [CrossRef]
  5. C. Jáuregui and J. M. López-Higuera, Opt. Lett. 30, 14 (2005). [CrossRef]
  6. O. V. Ivanov, Opt. Lett. 30, 3290 (2005). [CrossRef]
  7. R. I. Laming and D. N. Payne, J. Lightwave Technol. 7, 2084 (1989). [CrossRef]
  8. J. R. Qian, Q. Guo, and L. Li, IEE Proc. Optoelectron. 141, 373 (1994).
  9. V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovskii, and A. I. Usov, Quantum Electron. 36, 287 (2006). [CrossRef]
  10. G. T. Moore and J. R. Marciante, “Cladding-pumped fiber with helical rare-earth-doped core for fiber lasers and amplifiers,” U.S. patent6,650,664 (November18, 2003).
  11. P. Wang, L. J. Cooper, W. A. Clarkson, J. Nilsson, R. B. Williams, J. Sahu, and A. K. Vogel, Electron. Lett. 40, 1325 (2004). [CrossRef]
  12. S. Lefrancois, T. S. Sosnowski, C.-H. Liu, A. Galvanauskas, and F. W. Wise, Opt. Express 19, 3464 (2011). [CrossRef]
  13. M. Fuochi, J. Hayes, K. Furusawa, W. Belardi, J. Baggett, T. Monro, and D. Richardson, Opt. Express 12, 1972 (2004). [CrossRef]
  14. A. Michie, J. Canning, I. Bassett, J. Haywood, K. Digweed, M. Åslund, B. Ashton, M. Stevenson, J. Digweed, A. Lau, and D. Scandurra, Opt. Express 15, 1811 (2007). [CrossRef]
  15. A. Argyros, J. Pla, F. Ladouceur, and L. Poladian, Opt. Express 17, 15983 (2009). [CrossRef]
  16. W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and K. Oh, Opt. Commun. 282, 3456 (2009). [CrossRef]
  17. Y. K. Chamorovsky, N. I. Starostin, S. K. Morshnev, V. P. Gubin, M. V. Ryabko, A. I. Sazonov, and I. L. Vorob’ev, Quantum Electron. 39, 1074 (2009). [CrossRef]
  18. V. M. Churikov, V. I. Kopp, and A. Z. Genack, Opt. Lett. 35, 342 (2010). [CrossRef]
  19. P. St.J. Russell, J. Lightwave Technol 24, 4729 (2006). [CrossRef]
  20. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013). [CrossRef]
  21. G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012). [CrossRef]
  22. X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013). [CrossRef]
  23. T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, X. M. Xi, and P. St.J. Russell, J. Opt. Soc. Am. B 30, 2921 (2013). [CrossRef]
  24. J. F. Nye, Physical Properties of Crystals (Oxford, 1985).
  25. A. Bertholds and R. Dandliker, J. Lightwave Technol. 6, 17 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited