OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 24 — Dec. 15, 2013
  • pp: 5422–5425

All-digital signal-processing open-loop fiber-optic gyroscope with enlarged dynamic range

Qin Wang, Chuanchuan Yang, Xinyue Wang, and Ziyu Wang  »View Author Affiliations

Optics Letters, Vol. 38, Issue 24, pp. 5422-5425 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and realize a new open-loop fiber-optic gyroscope (FOG) with an all-digital signal-processing (DSP) system where an all-digital phase-locked loop is employed for digital demodulation to eliminate the variation of the source intensity and suppress the bias drift. A Sagnac phase-shift tracking method is proposed to enlarge the dynamic range, and, with its aid, a new open-loop FOG, which can achieve a large dynamic range and high sensitivity at the same time, is realized. The experimental results show that compared with the conventional open-loop FOG with the same fiber coil and optical devices, the proposed FOG reduces the bias instability from 0.259 to 0.018deg/h, and the angle random walk from 0.031 to 0.006deg/h1/2, moreover, enlarges the dynamic range to ±360deg/s, exceeding the maximum dynamic range ±63deg/s of the conventional open-loop FOG.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2800) Fiber optics and optical communications : Gyroscopes

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 17, 2013
Revised Manuscript: November 11, 2013
Manuscript Accepted: November 18, 2013
Published: December 11, 2013

Qin Wang, Chuanchuan Yang, Xinyue Wang, and Ziyu Wang, "All-digital signal-processing open-loop fiber-optic gyroscope with enlarged dynamic range," Opt. Lett. 38, 5422-5425 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Vali and R. W. Shorthill, Appl. Opt. 15, 1099 (1976). [CrossRef]
  2. K. Bohm, P. Marten, E. Weidel, and K. Petermann, Electron. Lett. 19, 997 (1983). [CrossRef]
  3. Y. Gronau and M. Tur, Appl. Opt. 34, 5849 (1995). [CrossRef]
  4. X. Wang, C. He, and Z. Wang, Opt. Lett. 36, 1191 (2011). [CrossRef]
  5. O. Celikel and S. E. San, IEEE Sens. J. 9, 176 (2009). [CrossRef]
  6. J. Nayak, Appl. Opt. 50, E152 (2011). [CrossRef]
  7. C. Shen and X. Chen, Appl. Opt. 51, 2541 (2012). [CrossRef]
  8. S. Emge, T. Monte, J. Brunner, J. Rossi, R. Miller, and K. Ganesan, Optical Fiber Sensors, Technical Digest CD (CD) (Optical Society of America, 2006), paper MC3.
  9. L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinowko, and J. Kowalski, Acta Geophys. 59, 578 (2011). [CrossRef]
  10. R. Bergh, H. Lefevre, and H. Shaw, J. Lightwave Technol. 2, 91 (1984). [CrossRef]
  11. D. Banerjee, PLL Performance, Simulation and Design (Dog Ear, 2006).
  12. F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited