OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 24 — Dec. 15, 2013
  • pp: 5446–5449

Multiwavelength shearing interferometry for measuring the slopes, curvatures, and shapes of thin films/substrate systems

Changxing Zhang, Xuelin Dong, Xue Feng, and Keh-Chih Hwang  »View Author Affiliations

Optics Letters, Vol. 38, Issue 24, pp. 5446-5449 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiwavelength shearing interferometry, a full-field, real-time, and vibration-insensitive method with enhanced accuracy, is proposed. Theoretically, the more wavelengths that are used for shearing interferometers, the higher the precision that can be achieved in the measurement of slopes, curvatures, and the shapes of reflective surfaces. A spherical mirror with specified curvature radius is used to calibrate this method, and then the nonuniform deformation and shape of the TiNi film/Si substrate system are obtained experimentally.

© 2013 Optical Society of America

OCIS Codes
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(230.1950) Optical devices : Diffraction gratings

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 15, 2013
Manuscript Accepted: October 28, 2013
Published: December 13, 2013

Changxing Zhang, Xuelin Dong, Xue Feng, and Keh-Chih Hwang, "Multiwavelength shearing interferometry for measuring the slopes, curvatures, and shapes of thin films/substrate systems," Opt. Lett. 38, 5446-5449 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. B. Freund, J. Mech. Phys. Solids 48, 1159 (2000). [CrossRef]
  2. X. Feng, Y. Huang, H. Q. Jiang, D. Ngo, and A. J. Rosakis, J. Mech. Mater. Struct. 1, 1041 (2006). [CrossRef]
  3. T. S. Park and S. Suresh, Acta Mater. 48, 3169 (2000). [CrossRef]
  4. X. Feng, Y. Huang, and A. J. Rosakis, J. Appl. Mech. 75, 021022 (2008). [CrossRef]
  5. M. A. Brown, A. J. Rosakis, and X. Feng, Int. J. Solids Struct. 44, 1755 (2007). [CrossRef]
  6. X. L. Dong, X. Feng, K.-C. Hwang, S. Ma, and Q. Ma, Opt. Express 19, 13201 (2011) [CrossRef]
  7. X. Dong, C. Zhang, X. Feng, and K.-C. Hwang, Exp. Mech. 53, 959 (2013). [CrossRef]
  8. S. Xia and M. Mello, Exp. Mech. 51, 653 (2011). [CrossRef]
  9. M. Finot, I. A. Blech, S. Suresh, and H. Fujimoto, J. Appl. Phys. 81, 3457 (1997). [CrossRef]
  10. A. E. Giannakopoulos, I. A. Blech, and S. Suresh, Acta Mater. 49, 3671 (2001). [CrossRef]
  11. J. A. Floro and E. Chason, Appl. Phys. Lett. 69, 3830 (1996). [CrossRef]
  12. A. J. Rosakis, R. P. Singh, Y. Tsuji, E. Kolawa, and N. R. Moore, Thin Solid Films 325, 42 (1998). [CrossRef]
  13. T.-S. Park, S. Suresh, A. J. Rosakis, and J. Ryu, J. Mech. Phys. Solids 51, 2191 (2003). [CrossRef]
  14. X. Dong, X. Feng, and K. Hwang, Thin Solid Films 519, 2464 (2011). [CrossRef]
  15. K. Qian, Opt. Lasers Eng. 45, 304 (2007). [CrossRef]
  16. H. V. Tippur, S. Krishnaswamy, and A. J. Rosakis, Int. J. Fract. 48, 193 (1991). [CrossRef]
  17. H. V. Tippur, Appl. Opt. 31, 4428 (1992). [CrossRef]
  18. Y. J. Lee, J. Lambros, and A. J. Rosakis, Opt. Lasers Eng. 25, 25 (1996). [CrossRef]
  19. K. Iizuka, Engineering Optics (Springer, 2008).
  20. G. Birkhoff and H. Garabedian, J. Math. Phys. 39, 258 (1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited