OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 3 — Feb. 1, 2013
  • pp: 272–274

Metamaterial saturable absorber mirror

Govind Dayal and S. Anantha Ramakrishna  »View Author Affiliations

Optics Letters, Vol. 38, Issue 3, pp. 272-274 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a metamaterial saturable absorber mirror at midinfrared wavelengths that can show a saturation of absorption with intensity of incident light and switch to a reflecting state. The design consists of an array of circular metallic disks separated by a thin film of vanadium dioxide (VO2) from a continuous metallic film. The heating due to the absorption in the absorptive state causes the VO2 to transit to a metallic phase from the low temperature insulating phase. The metamaterial switches from an absorptive state (R0.1%) to a reflective state (R>95%) for a specific threshold intensity of the incident radiation corresponding to the phase transition of VO2, resulting in the saturation of absorption in the metamaterial. The computer simulations show over 99.9% peak absorbance, a resonant bandwidth of about 0.8 μm at 10.22 μm wavelengths, and saturation intensity of 140mWcm2 for undoped VO2 at room temperature. We also carried out numerical simulations to investigate the effects of localized heating and temperature distribution by solving the heat diffusion problem.

© 2013 Optical Society of America

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(230.4040) Optical devices : Mirrors
(260.3060) Physical optics : Infrared
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: September 18, 2012
Manuscript Accepted: December 12, 2012
Published: January 16, 2013

Govind Dayal and S. Anantha Ramakrishna, "Metamaterial saturable absorber mirror," Opt. Lett. 38, 272-274 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC, 2008).
  2. D. R. Smith, W. J. Padilla, D. Vier, S. N. Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4187 (2000). [CrossRef]
  3. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006). [CrossRef]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008). [CrossRef]
  6. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008). [CrossRef]
  7. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010). [CrossRef]
  8. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010). [CrossRef]
  9. T. Maier and H. Brueckl, Opt. Lett. 35, 3766 (2010). [CrossRef]
  10. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, J. Opt. 14, 024005 (2012). [CrossRef]
  11. X. Chen, Y. Chen, M. Yan, and M. Qiu, ACS Nano 6, 2550 (2012). [CrossRef]
  12. H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, Phys. Rev. Lett. 105, 073901 (2010). [CrossRef]
  13. G. Dayal and S. A. Ramakrishna, Opt. Express 20, 17503 (2012). [CrossRef]
  14. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, Opt. Express 17, 18330 (2009). [CrossRef]
  15. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, Opt. Express 16, 19504 (2008). [CrossRef]
  16. Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011). [CrossRef]
  17. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Science 325, 1518 (2009). [CrossRef]
  18. M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. Di Ventra, and D. N. Basov, Appl. Phys. Lett. 99, 044103 (2011). [CrossRef]
  19. COMSOL Multiphysics RF Module 3.5a User’s Guide.
  20. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, Appl. Opt. 22, 1099 (1983). [CrossRef]
  21. O. P. Mikheeva and A. I. Sidorov, Tech. Phys. 48, 602 (2003). [CrossRef]
  22. G. Chen and P. Hui, Appl. Phys. Lett. 74, 2942 (1999). [CrossRef]
  23. S. A. Pollack, D. B. Chang, F. A. Chudnovky, and I. A. Khakhaev, J. Appl. Phys. 78, 3592 (1995). [CrossRef]
  24. M. Rini, A. Cavalleri, R. W. Schoenlein, R. Lpez, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, Opt. Lett. 30, 558 (2005). [CrossRef]
  25. J. Nag and R. F. Haglund, J. Phys. Condens. Matter 20, 264016 (2008). [CrossRef]
  26. D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Sdmeyer, and U. Keller, Opt. Express 16, 1886 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited