OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 3 — Feb. 1, 2013
  • pp: 290–292

Enhancement of diffuse reflectance using air tunnel structure

Jae Eun Jang, Gae Hwang Lee, Byoung Gwon Song, Seung Nam Cha, and Jae Eun Jung  »View Author Affiliations

Optics Letters, Vol. 38, Issue 3, pp. 290-292 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Submicrometer air gap structure has formed on diffuse reflection structure to improve light reflectance. Covering polymer or liquid on a diffuse reflector to make optical components induces the severe decrease of the total reflectance, since the diffuse reflected angle of some light rays is larger than the critical angle and the rays travel to the medium until meeting a proper small incident angle. The reflectance drops to 68% of the original value with just a polymer coating on the diffuse reflector. The formation of an air tunnel structure between the polymer layer and the diffuse reflector makes a symmetrical reflective index matching state and recovers 95% of the original reflectance. Due to the simple fabrication process and the chemical stability, the structure can be applied to various optical components and reflective display devices.

© 2013 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.1980) Optical devices : Diffusers

ToC Category:
Optical Devices

Original Manuscript: November 21, 2012
Revised Manuscript: December 19, 2012
Manuscript Accepted: December 20, 2012
Published: January 17, 2013

Jae Eun Jang, Gae Hwang Lee, Byoung Gwon Song, Seung Nam Cha, and Jae Eun Jung, "Enhancement of diffuse reflectance using air tunnel structure," Opt. Lett. 38, 290-292 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Hanrahan and W. Krueger, SIGGRAPH ’93 Proc. 27, 165 (1993).
  2. M. Gratzel, Nature 409, 575 (2001). [CrossRef]
  3. J. E. Jang, S. N. Cha, J. M. Lee, J. J. Kim, G. A. J. Amaratunga, and J. E. Jung, Opt. Lett. 37, 235 (2012). [CrossRef]
  4. D. Madzharov, R. Dewab, and D. Kinpp, Opt. Express 19, A95 (2011). [CrossRef]
  5. B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011). [CrossRef]
  6. G. H. Lee, K. Y. Hwang, J. E. Jang, Y. W. Jin, S. Y. Lee, and J. E. Jung, Opt. Lett. 36, 754 (2011). [CrossRef]
  7. A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, Appl. Phys. Lett. 74, 2572 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited